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CHAPTER 1 Units and Problem Solving
Version 2

Chapter Outline
1.1 THE BIG IDEA

1.2 UNITS CONCEPTS

1.3 FREQUENTLY USED MEASUREMENTS, GREEK LETTERS, AND PREFIXES

1.4 APPLICATIONS AND EXAMPLES

1.5 UNITS AND PROBLEM SOLVING PROBLEM SET

1
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1.1 The Big Idea

Since physics depends fundamentally on measurements that are interpreted through math, the first distinction we
have to make is between different types of measurements and their properties. First, all measurements must have
units. Units identify what a specific number refers to. For instance, the number 42 can be used to represent 42 miles,
42 pounds, or 42 elephants! Numbers are mathematical objects, but units give them physical meaning. Keeping
track of units can help you avoid mistakes when you work out problems.

2
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1.2 Units Concepts

• Every answer to a physics problem must include units. Even if a problem explicitly asks for a speed in meters
per second (m/s), the answer is 5 m/s, not 5.

• When you’re not sure how to approach a problem, you can often get insight by considering how to obtain
the units of the desired result by combining the units of the given variables. For instance, if you are given a
distance (in meters) and a time (in hours), the only way to obtain units of speed (meters/hour) is to divide the
distance by the time. This is a simple example of a method called dimensional analysis, which can be used to
find equations that govern various physical situations without any knowledge of the phenomena themselves.
To use dimensional analysis, assume that the answer to a problem consists of a product of all the variables
given raised to various powers. Many times, there will be only one such combination that gives the desired
result.

• This textbook uses SI units (La Système International d’Unités), the most modern form of the metric system.

• When converting speeds from metric to American units, remember the following rule of thumb: a speed
measured in mi/hr is about double the value measured in m/s (i.e., 10 m/s is equal to about 20 MPH).
Remember that the speed itself hasn’t changed, just our representation of the speed in a certain set of units.

• If a unit is named after a person, it is capitalized. So you write “10 Newtons,” or “10 N,” but “10 meters,” or
“10 m.”

Scalars

The simplest kind of measurement is a single number, or scalar. Scalars are all one needs to describe temperature,
density, length, and many other phenomena in physics. The mathematics used in the manipulation of scalars –
addition, subtraction, multiplication, and division – come naturally to humans, and, to a large extent, to other animals.
Many mammals have an innate ability to divide a pile of food into relatively equal pieces, to distinguish between
objects of different size, and to perform other tasks that seemingly require intelligence. It would seem crazy to
suggest that the animals are performing mathematical operations based on formal logic, but that is not the point.
Much more likely is the idea that formal mathematics is an extension of our natural abilities. In fact, the way math
has been taught throughout history and across the world – think of your own elementary and middle school classes
– seems to reflect this underlying property of human nature.

Vectors

The first new concept introduced here is that of a vector: a scalar magnitude with a direction. In a sense, we are
almost as good at natural vector manipulation as we are at adding numbers. Consider, for instance, throwing a ball
to a friend standing some distance away. To perform an accurate throw, one has to figure out both where to throw
and how hard. We can represent this concept graphically with an arrow: it has an obvious direction, and its length
can represent the distance the ball will travel in a given time. Such a vector (an arrow between the original and final
location of an object) is called a displacement:
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Vector Addition and Subtraction

Like scalars, vectors have a branch of mathematics dedicated to them; and again, the basics can be considered an
extension of our natural abilties, while the more advanced parts are quite foreign to our intuition. The first concept
is that of vector addition. Think about throwing a pass, but this time to a moving target. If we use our original
arrow, the target will have moved by the time the ball reaches its endpoint. To be accurate, we need to consider the
displacement of the target and add it to the original arrow. The picture can be presented this way:

It should be apparent that if we throw the ball according to the dashed arrow, we will hit the target. This third vector
is the sum of the first two displacements, and of course, also a displacement vector. This is how vectors are added
graphically: if the end of the first vector is drawn at the beginning of the second, the arrow linking the beginning of
the first with the end of the second will be their sum. Alternatively, the two vectors can be moved to become the legs
of a parallelogram. Their sum is then the diagonal:

To subtract vectors, you can simply flip the vector you are subtracting by 180 degrees and add them. This is
essentially the vector version of saying that subtracting a positive number is the same as adding a negative one:

Vector Components

From the above examples, it should be clear that two vectors add to make another vector. Sometimes, the opposite
operation is useful: we often want to represent a vector as the sum of two other vectors. This is called breaking a
vector into its components. When vectors point along the same line, they essentially add as scalars. If we break
vectors into components along the same lines, we can add them by adding their components. The lines we pick to

4
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break our vectors into components along are often called a basis. Any basis will work in the way described above,
but we usually break vectors into perpendicular components, since it will frequently allow us to use the Pythagorean
theorem in time-saving ways. Specifically, we usually use the x and y axes as our basis, and therefore break vectors
into what we call their x and y components:

A final reason for breaking vectors into perpendicular components is that they are in a sense independent: adding
vectors along a component perpendicular to an original component one will never change the original component,
just like changing the y-coordinate of a point can never change its x-coordinate.
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1.3 Frequently Used Measurements, Greek
Letters, and Prefixes

Measurements

TABLE 1.1: Types of Measurements

Type of measurement Commonly used symbols Fundamental units
length or position d,x,L meters (m)
time t seconds (s)
velocity or speed v,u meters per second (m/s)
mass m kilograms (kg)
force F Newtons (N)
energy E,K,U,Q Joules (J)
power P Watts (W)
electric charge q,e Coulombs (C)
temperature T Kelvin (K)
electric current I Amperes (A)
electric field E Newtons per Coulomb (N/C)
magnetic field B Tesla (T)

Prefixes

TABLE 1.2: Prefix Table

SI prefix In Words Factor
nano (n) billionth 1∗10−9

micro (µ) millionth 1∗10−6

milli (m) thousandth 1∗10−3

centi (c) hundreth 1∗10−2

deci (d) tenth 1∗10−1

deca (da) ten 1∗101

hecto (h) hundred 1∗102

kilo (k) thousand 1∗103

mega (M) million 1∗106

giga (G) billion 1∗109

Greek Letters

6
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TABLE 1.3: Frequently used Greek letters.

µ “mu” τ “tau” Φ “Phi”∗ ω “omega” ρ “rho”
θ “theta” π “pi ” Ω “Omega”∗ λ “lambda” Σ “Sigma”∗

α “alpha” β “beta” γ “gamma” ∆ “Delta”∗ ε “epsilon”

7
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1.4 Applications and Examples

Here are some situations where the ideas covered in the chapter are useful.

Question: The lengths of the sides of a cube are doubling each second. At what rate is the volume increasing?

Solution:The cube side length, x, is doubling every second. Therefore after 1 second it becomes 2x. The volume of
the first cube of side x is x× x× x = x3. The volume of the second cube of side 2x is 2x×2x×2x = 8x3. The ratio
of the second volume to the first volume is 8x3/x3 = 8. Thus the volume is increasing by a factor of 8 every second.

Fermi Questions

The late great physicist Enrico Fermi used to solve problems by making educated guesses. Say you want to
guesstimate the number of cans of soda drunk in San Francisco in one year. You’ll come pretty close if you guess
that there are about 800,000 people in S.F. and that one person drinks on average about 100 cans per year. So, around
80,000,000 cans are consumed every year. Sure, this answer is not exactly right, but it is likely not off by more than
a factor of 10 (i.e., an “order of magnitude”). That is, even though we guessed, we’re going to be in the ballpark of
the right answer. This is often the first step in working out a physics problem.

Dimensional Analysis

Question: find (up to a proportionality constant) the period of a pendulum hanging on a string; that is, find how long
it takes such a pendulum to swing through one cycle, knowing that it depends only the acceleration due to gravity
g = 9.8m/s2 and its length, l, which is measured in meters.

Solution: since the period is in units of time, the answer needs to have units of time (seconds). The only way to
obtain seconds from the given quantities is to take the square root of the reciprocal of g (which will have units of
seconds over square root of meters) and multiply it by the square root of l, which has units of square root of meters
— this will get rid of the meters altogether. In other words, the period will be proportional to the square root of l
divided by the square root of g:

T ∝

√
l
g
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1.5 Units and Problem Solving Problem Set

1. Estimate or measure your height.

a. Convert your height from feet and inches to meters.
b. Convert your height from feet and inches to centimeters (100 cm = 1 m)

2. Estimate or measure the amount of time that passes between breaths when you are sitting at rest.

a. Convert the time from seconds into hours
b. Convert the time from seconds into milliseconds (ms)

3. Convert the French speed limit of 140 km/hr into mi/hr.
4. Estimate or measure your weight.

a. Convert your weight in pounds into a mass in kg
b. Convert your mass from kg into µg
c. Convert your weight into Newtons

5. Find the SI unit for pressure.
6. An English lord says he weighs 12 stone.

a. Convert his weight into pounds (you may have to do some research online)
b. Convert his weight in stones into a mass in kilograms

7. If the speed of your car increases by 10 mi/hr every 2 seconds, how many mi/hr is the speed increasing every
second? State your answer with the units mi/hr/s.

8. A tortoise travels 15 meters (m) west, then another 13 centimeters (cm) west. How many meters total has
she walked?

9. A tortoise, Bernard, starting at point A travels 12 m west and then 150 millimeters (mm) east. How far west
of point A is Bernard after completing these two motions?

10. 80 m+145 cm+7850 mm = X mm. What isX ?
11. A square has sides of length 45 mm. What is the area of the square in mm2?
12. A square with area 49 cm2 is stretched so that each side is now twice as long. What is the area of the square

now? Include a sketch.
13. A rectangular solid has a square face with sides 5 cm in length, and a length of 10 cm. What is the volume of

the solid in cm3? Sketch the object, including the dimensions in your sketch.
14. As you know, a cube with each side 4 m in length has a volume of 64 m3. Each side of the cube is now doubled

in length. What is the ratio of the new volume to the old volume? Why is this ratio not simply 2? Include a
sketch with dimensions.

15. What is the ratio of the mass of the Earth to the mass of a single proton? (See equation sheet.)
16. A spacecraft can travel 20 km/s. How many km can this spacecraft travel in 1 hour (h)?
17. A dump truck unloads 30 kilograms (kg) of garbage in 40 s. How many kg/s are being unloaded?
18. The lengths of the sides of a cube are doubling each second. At what rate is the volume increasing?

9
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19. Estimate the number of visitors to Golden Gate Park in San Francisco in one year. Do your best to get an
answer that is correct within a factor of 10.

20. Estimate the number of water drops that fall on San Francisco during a typical rainstorm.
21. What does the formula a = F

m tell you about the units of the quantity a (whatever it is)?
22. Add the following vectors using the parallelogram method.

a.

Answers to Selected Problems

1. a. A person of height 5 ft. 11 in. is 1.80 m tall
2. b. The same person is
3. 180 cm
4. a. 3 seconds = 1/1200 hours b. 3x103 ms
5. 87.5 mi/hr
6. c. if the person weighs 150 lb. this is equivalent to 668 N
7. Pascals (Pa), which equals N/m2

8. 168 lb.,76.2 kg
9. 5 mi/hr/s

10. 15.13 m
11. 11.85 m
12. 89,300 mm
13. f. 2025 mm2

14. b. 196 cm2

15. c. 250 cm3

16. 8 : 1, each side goes up by 2 cm, so it will change by 23

17. 3.5×1051 : 1
18. 72,000 km/h
19. 0.75 kg/s
20. 8×2N cm3/ sec; N is for each second starting with 0 seconds for 8 cm3

21. About 12 million
22. About 1 1

2 trillion (1.5×1012)

23. [a] = N/kg = m/s2

10
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2.1 The Big Idea

Energy, a scalar quantity measured in Joules, is a measure of the amount of, or potential for, dynamical activity in
something. The total amount of energy in the universe is constant. This kind of symmetry is called a conservation
law. Conservation of energy is actually just one of five conservation laws that have been identified by scientists.

The concept of energy conservation is one of the most important in physics, since according to our best model of
the world, everything in the universe — even mass — is a form of energy. Any group of things (we’ll use the word
system for this concept in the book) has a certain amount of energy. Energy can be added to a system: when chemical
bonds in a burning log break, they release heat. A system can also lose energy: when a spacecraft “burns up” its
energy of motion during re-entry, it releases energy to the surrounding atmospher in the form of heat. A closed
system is one for which the energy is constant, or conserved. In this chapter, we will often consider closed systems;
although the total amount of energy stays the same, it can transform from one kind to another. We will consider
transfers of energy between systems – known as work – in more detail in Chapter 8. Needless to say, the universe as
a whole is a closed system in this sense.

12
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2.2 Types of Energy

Understanding how various processes change energy from one form to another is equivalent to understanding
physics. In this class, we will present an overview of various forms of energy but will mainly focus on three:
kinetic, gravitational potential, and electrical potential. We will focus on the first two in this chapter; electrical
potential energy is covered in later chapters.

Kinetic Energy

The first is Kinetic Energy, or the energy of motion. Any moving object — from the earth to an individual gas
molecule — has some kinetic energy, which can be calculated by using the following formula:

K = 1
2 mv2 [1]

The m refers to the object’s mass, while the v is its speed.

Gravitational Potential Energy

The second type of energy is due to gravity and is therefore called gravitational potential energy. Things with mass
have noticeable gravitational potential energy when they are near another object of significant mass, such as the earth,
the sun, a black hole, etc. This energy is different from kinetic energy in that it represents potential for motion, rather
than motion itself. If I lift a rock away from the surface of the earth to some height and then let it drop, it will gain
velocity as it travels downwards. According to the last paragraph, this means it also gains kinetic energy. Assuming
no energy is lost to air resistance, there will be a one to one correspondence between gravitational potential energy
lost and kinetic energy gained. Near the surface of a planet, the gravitational potential energy gained by an object of
mass m when raised a height ∆h from its original position perpendicular to the surface of the planet is just

Eg = mg∆h [2]

The constant g will vary from planet to planet, star to star. On earth, the acceleration due to gravity is 9.8m/s2, often
rounded to 10m/s2. This is the formula you will likely use the majority of the time. However, there is a way to
express the gravitational potential energy of any two objects in the universe — any number of objects, in fact. For
the two object case, if we call their masses m1 and m2 and the distance between their centers of mass r, the formula
is:

EG =
Gm1m2

r
[3]

In fact, equation [2] is a special case of equation [3]. That is, it is a version of equation [3] that holds under specific
circumstances. See the appendix to this chapter for a derivation.

13

http://www.ck12.org


2.3. Key Concepts www.ck12.org

2.3 Key Concepts

• Any object in motion has kinetic energy. Kinetic energy increases as the square of the velocity, so faster
objects have much more kinetic energy than slower ones.

• The energy associated with gravity is called gravitational potential energy. Near the surface of the earth, an
object’s gravitational potential energy increases linearly with its height.

• Molecules store chemical potential energy in the bonds between electrons; when these bonds are broken the
released energy can be transferred into kinetic and/or potential energy. 1KCal (1 food Calorie) is equal to
4180 Joules of stored chemical potential energy.

• Energy can be transformed from one kind into another and exchanged between systems; if there appears to be
less total energy in a system at the end of a process then at the beginning, the “lost” energy has been transferred
to another system, often by heat or sound waves.

14
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2.4 Key Applications

• In “roller coaster” problems, a cart’s gravitational potential energy at the top of one hill is transformed into
kinetic energy at the next valley. It turns back into potential energy as cart climbs the next hill, and so on. In
reality a fraction of the energy is lost to the tracks and air as heat, which is why the second rise is rarely as big
as the first in amusement parks.

• In “pole-vaulter” problems, the athlete’s body breaks down the food molecules to change some of the bonding
energy into energy that is used to power the body. This energy is transformed into kinetic energy as the athlete
gains speed. The kinetic energy can be changed into potential energy as the athlete gains height.

• In “pendulum” problems, the gravitational potential energy of the pendulum at its highest point changes to
kinetic energy as it swings to the bottom and then back into potential energy as it swings up. At any in-between
point there is a combination of kinetic energy and potential energy, but the total energy remains constant.
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2.5 Examples

Example 1

Question A roller coaster begins at rest 120m above the ground at point A. Assume no energy is lost. The radius of
the loop is 40 ft

a) Find the speed of the roller coaster at point B, D, F, and H.

b) At point G the roller coaster’s speed is 22m/s. How high off the ground is point G?

FIGURE 2.1
Roller coaster for problem 8.

Solution a) To solve for the speed at any point on the roller coaster, we use conservation of energy: the cart’s total
energy, equal to its initial energy (all potential) is split between kinetic and potential energy at all points during the
trip. Therefore, at any point

mgh+
1
2

mv2 = mg×120

Solving for v:

120mg =
1
2

mv2 +mgh⇒ 120g−gh =
1
2

mv2⇒ g(120−h) =
1
2

mv2⇒
√

2g(120−h) = v

Therefore

B:
√

2gh =
√

2×9.8m/s2× (120−60m) = 34m/s

D:
√

2gh =
√

2×9.8m/s2× (120−80m) = 28m/s

F:
√

2gh =
√

2×9.8m/s2× (120−0m) = 48m/s

H:
√

2gh =
√

2×9.8m/s2× (120−120m) = 0m/s

b) As in part a), we start with the equation

mgh+
1
2

mv2 = mg×120

but this time we will solve for h.

120mg =
1
2

mv2 +mgh⇒ 120g− 1
2

v2 = gh⇒ 120g
g
− v2

2g
= h⇒ 120− v2

2g
= h
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Now simply input the known variables to solve for h.

h = 120− v2

2g
= 120− (22m/s)2

2×9.8m/s2 = 25m

17

http://www.ck12.org


2.6. Energy Conservation Problem Set www.ck12.org

2.6 Energy Conservation Problem Set

1. A stationary bomb explodes into hundreds of pieces. Which of the following statements best describes the
situation?

a. The kinetic energy of the bomb was converted into heat.
b. The chemical potential energy stored in the bomb was converted into heat and gravitational potential

energy.
c. The chemical potential energy stored in the bomb was converted into heat and kinetic energy.
d. The chemical potential energy stored in the bomb was converted into heat, sound, kinetic energy, and

gravitational potential energy.
e. The kinetic and chemical potential energy stored in the bomb was converted into heat, sound, kinetic

energy, and gravitational potential energy.

2. You hike up to the top of Granite Peak in the Trinity Alps to think about physics.

a. Do you have more potential or kinetic energy at the top of the mountain than you did at the bottom?
Explain.

b. Do you have more, less, or the same amount of energy at the top of the mountain than when you started?
(Let’s assume you did not eat anything on the way up.) Explain.

c. How has the total energy of the Solar System changed due to your hike up the mountain? Explain.
d. If you push a rock off the top, will it end up with more, less, or the same amount of energy at the bottom?

Explain.
e. For each of the following types of energy, describe whether you gained it, you lost it, or it stayed the

same during your hike:

a. Gravitational potential energy
b. Energy stored in the atomic nuclei in your body
c. Heat energy
d. Chemical potential energy stored in the fat cells in your body
e. Sound energy from your footsteps
f. Energy given to you by a wind blowing at your back

3. Just before your mountain bike ride, you eat a 240 Calorie exercise bar. (You can find the conversion between
food Calories and Joules in the chapter.) The carbon bonds in the food are broken down in your stomach,
releasing energy. About half of this energy is lost due to inefficiencies in your digestive system.

(a) Given the losses in your digestive system how much of the energy, in Joules, can you use from the
exercise bar?

After eating, you climb a 500 m hill on your bike. The combined mass of you and your bike is 75 kg.

(b) How much gravitational potential energy has been gained by you and your bike?
(c) Where did this energy come from?
(d) If you ride quickly down the mountain without braking but losing half the energy to air resistance, how

fast are you going when you get to the bottom?

4. You find yourself on your bike at the top of Twin Peaks in San Francisco. You are facing a 600 m descent.
The combined mass of you and your bicycle is 85 kg.

18
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(a) How much gravitational potential energy do you have before your descent?
(b) You descend. If all that potential energy is converted to kinetic energy, what will your speed be at the

bottom?
(c) Name two other places to which your potential energy of gravity was transferred besides kinetic energy.

How will this manifest itself in your speed at the bottom of the hill? (No numerical answer is needed
here.)

5. Before a run, you eat an apple with 1,000,000 Joules of binding energy.

a. 550,000 Joules of binding energy are wasted during digestion. How much remains?
b. Some 95% of the remaining energy is used for the basic processes in your body (which is why you can

warm a bed at night!). How much is available for running?
c. Let’s say that, when you run, you lose 25% of your energy overcoming friction and air resistance. How

much is available for conversion to kinetic energy?
d. Let’s say your mass is 75 kg. What could be your top speed under these idealized circumstances?
e. But only 10% of the available energy goes to KE, another 50% goes into heat exhaust from your body.

Now you come upon a hill if the remaining energy is converted to gravitational potential energy. How
high do you climb before running out of energy completely?

6. A car goes from rest to a speed of v in a time t. Sketch a schematic graph of kinetic energy vs. time. You do
not need to label the axes with numbers.

7. A 1200 kg car traveling with a speed of 29 m/s drives horizontally off of a 90 m cliff.

a. Sketch the situation.
b. Calculate the potential energy, the kinetic energy, and the total energy of the car as it leaves the cliff.
c. Make a graph displaying the kinetic, gravitational potential, and total energy of the car at each 10 m

increment of height as it drops

8. A roller coaster begins at rest 120 m above the ground at point A, as shown above. Assume no energy is lost
from the coaster to frictional heating, air resistance, sound, or any other process. The radius of the loop is
40 m .

FIGURE 2.2
Roller coaster for problem 8.
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a. Find the speed of the roller coaster at points B,C,D,E,F, and H.
b. At point G the speed of the roller coaster is 22 m/s. How high off the ground is point G?

9. A pendulum has a string with length 1.2 m. You hold it at an angle of 22 degrees to the vertical and release it.
The pendulum bob has a mass of 2.0 kg.

FIGURE 2.3
Pendulum for problem 9.

a. What is the potential energy of the bob before it is released? (Hint: use geometry to determine the height
when released.)

b. What is its speed when it passes through the midpoint of its swing?
c. Now the pendulum is transported to Mars, where the acceleration of gravity g is 2.3 m/s2. Answer parts

(a) and (b) again, but this time using the acceleration on Mars.

10. On an unknown airless planet an astronaut drops a 4.0 kg ball from a 60 m ledge. The mass hits the bottom
with a speed of 12 m/s.

a. What is the acceleration of gravity g on this planet?
b. The planet has a twin moon with exactly the same acceleration of gravity. The difference is that this

moon has an atmosphere. In this case, when dropped from a ledge with the same height, the 4.0 kg ball
hits bottom at the speed of 9 m/s. How much energy is lost to air resistance during the fall?

11. A 1500 kg car starts at rest and speeds up to 3.0 m/s.

a. What is the gain in kinetic energy?
b. We define efficiency as the ratio of output energy (in this case kinetic energy) to input energy. If this

car’s efficiency is 0.30, how much input energy was provided by the gasoline?
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c. If 0.15 gallons were used up in the process, what is the energy content of the gasoline in Joules per
gallon?

12. A pile driver’s motor expends 310,000 Joules of energy to lift a 5400 kg mass. The motor is rated at an
efficiency of 0.13 (see 11b). How high is the mass lifted?

Answers to Selected Problems

1. d
2. (discuss in class)

1. 5.0×105 J
2. 3.7×105 J
3. Chemical bonds in the food.
4. 99 m/s

1. 5.0×105 J
2. 108 m/s

1. 450,000 J
2. 22,500 J
3. 5,625 J
4. 21.2 m/s
5. 9.18 m

3. .
4. b. KE = 504,600 J;Ug = 1,058,400 J;Etotal = 1,563,000 J

1. 34 m/s at B;28 m/s at D,40 m/s at E,49 m/s at C and F;0 m/s at H
2. 96 m

1. 1.7 J
2. 1.3 m/s
3. 0.4 J,0.63 m/s

1. 1.2 m/s2

2. 130 J

1. 6750 J
2. 2.25×105 J
3. 1.5×105 J/gallon of gas

5. 0.76 m
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3.1 Equivalence between [2] and [3]

The formulas above look pretty different, but the main conceptual split is that the g in the first formula above ([2])
varies from planet to planet, but the G in [3] constant throughout the universe — in fact, it’s called the Gravitational
Constant. You might think that this makes the second formula more fundamental than the first, and you would be
right. The first is actually a "special case" of the second. That is, the [3] always holds, but [2] only holds when
certain conditions are met: that is, you are at the surface of a spherical body. In this case they are equivalent, but [2]
is obviously simpler.

It is important to see the relationship between [2] and [3], since it is typical of the stuff of physics. If [3] is the more
fundamental equation, we should be able to start with it and derive [2]. First, we will make a minor simplification:
we will assume that the "object of interest" starts at the surface of the earth, and not some arbitrary height near
it (now we don’t have to deal with the deltas and hairier details without sacrificing any of the content). Then the
question we want to answer is: if we raise this object from the surface to a height h, what will its gravitational
potential energy change by?
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FIGURE 3.1
Illustration for the Equivalence Derivation

Since equation [3] always holds exactly (as far as we’re concerned), we can certainly use it. Before it was raised, the
object was at the surface, so its potential energy from Earth’s gravity was given by:

EGi =
Gm1m2

Rearth
[4]

This held because the r in [3] is the distance between the two objects’ centers of mass. The center of mass of the
earth is, predictably, at its center, so we can replace r above with Rearth for objects on its surface. After the object is
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raised, its distance from the center of the Earth increases by h. In other words, its new energy is

EG f =
Gm1m2

Rearth +h
[5]

Now we will rewrite equation [5] in the following way:

EG f =
Gm1m2

Rearth
× Rearth

Rearth +h

which, if we divide the denominator and numerator of the second fraction on the right of the above equation by the
Earth’s radius, gives us:

EG f =
Gm1m2

Rearth
× 1

1+ h
Rearth

=
Gm1m2

Rearth
×1× (1+

h
Rearth

)−1︸              ︷︷              ︸
of the form (1+x)−1

[6]

If we explore the quantities of the type (1+ x)−1, we will see that when |x|� 1, (1+ x)−1 ≈ 1− x . This kind of
adjustment is called a Taylor approximation. To prove this to yourself, use your calculator to try a bunch of different
numbers and see what the error is.

The ratio of h, the distance the object was raised, to the radius of the earth is miniscule. So, we can use the theorem
above, remembering that it is this ratio that plays the role of x above. This ratio is only small for large objects, such
as planets; and an object’s center of mass may not always be at its geographic center. Both have to be true for our
results to hold. Hence, special case.

Then we find that [6] reduces to

EG f =
Gm1m2

Rearth
× (1− h

Rearth
) [7]

Therefore, we can now rewrite the object’s final potential energy as:

EG f =
Gm1m2

Rearth
− hGm1m2

Rearth
2 [8]

The last step is to finally calculate the change in potential energy due to the movement. This is straightforward, since

∆E = EGi−EG f = (
Gm1m2

Rearth
)− (

Gm1m2

Rearth
− hGm1m2

Rearth
2 ) =

hGm1m2

Rearth
2

This is the equation we have been looking for. Although it doesn’t look like it, it is completely equivalent to the
formula Eg = mgh. The only variable in this formula is h, everything else — the radius and mass of Earth and G —
are constants. If we rearrange the formula, we see that:

hGm1m2

Rearth
2 = m1︸︷︷︸

m

× Gm2

Rearth
2︸    ︷︷    ︸

g

× h︸︷︷︸
h

The quantity labeled g, if calculated with the appropriate radius and mass, will give the effective acceleration due to
gravity near the surface. When Earth’s mass and radius are used. the result is 9.8 m/s, but feel free to check.
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3.2 References
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4.1 The Big Idea

One dimensional motion describes objects moving in straight lines. Speed is a scalar measure of how quickly an
object is moving along this line: units of length per one unit of time. If an object’s speed changes, it is said to be
accelerating (or decelerating). As we will see, understanding an object’s acceleration is the key to understanding its
motion. At this point, we are not worried about where the acceleration is coming from — we will deal with that
question later.

In general, position, displacement, velocity and acceleration have directions and are therefore vectors. It’s important
to note, however, that in one dimension there are only two possible directions for vectors to point in, and these are
usually labeled + and −. We will therefore typically avoid calling one dimensional quantities vectors, since their
direction can be represented with a sign. The quantities labeled vectors below can and will be treated as scalars with
signs in one dimensional situations throughout the book.
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4.2 Key Definitions

Symbols

{
∆(anything) Final value − initial value
anything0 Value at time 0

Scalars


t Time in seconds, s
d = | ~∆x1|+| ~∆x2| Distance (in meters, m)

v = |~v| Speed (in meters per second, m/s)

Vectors



~x =~x(t) Position
~∆x = ~x f −~xi Displacement
~vi Initial velocity
~v f Final velocity
~∆v = ~v f −~vi Change in velocity
~a = ∆~v

∆t Acceleration
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4.3 Deriving the Kinematics Equations

The simplest case of one dimensional motion is an object at rest. A slightly more difficult problem is that of an
object moving at a constant velocity. Such an object’s position at time t is given by the familiar d = rt formula, that
is, distance equals rate times time. In our language, this would be:

∆x = x f − xi = vt When velocity is constant [1]

If an object is undergoing an acceleration that changes with time, it is in general quite difficult to find its position and
velocity as a function of time. However, it’s always true that over a period of time ∆t average velocity and average
acceleration are given by:

vavg =
∆x
∆t

Always [2]

aavg =
∆v
∆t

Always [3],

In other words,

∆x = vavg∆t Always [4]

∆v = aavg∆t Always [5],

Therefore, finding an object’s position or velocity can be reduced to finding the average velocity or average accel-
eration, respectively. Usually, this is just as difficult as the problem mentioned above, but in one very common and
specific case — constant acceleration — these formulas are very useful. In this case, velocity changes at a linear
rate with time, that is:

v f = at + vi When acceleration constant [6]

You should realize this is just another version of equation [1], which in fact describes anything changing at a linear
rate. Since the average of a linear function over some time is just the average of its endpoints (figure 1), we have:

vavg =
v f + vi

2
When acceleration constant [7]

Now, we

Start with equation [7] vavg =
v f + vi

2

Plug in equation [6] vavg =
at + vi + vi

2

And end up with vavg =
at
2
+ vi

Finally, since ∆x(t) = vavgt x(t) = xi + vit + 1
2 at2[8]

We have obtained the equations of uniformly, accelerated motion, also known as the

Big Three Equations

x(t) = x0 + v0t + 1
2 at2 [8]

v(t) = v0 +at [6]

v f
2 = v0

2 +2ax (Derivation left to reader) [9]
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4.4 Hints for Problems

• When beginning a one dimensional problem, define a positive direction. The other direction is then taken to
be negative. Traditionally, "positive" is taken to mean "to the right"; however, any definition of direction used
consistency throughout the problem will yield the right answer.

• Be sure you understand the difference between average velocity (measured over a period of time) and instan-
taneous velocity (measured at a single moment in time).

• Gravity near the Earth pulls an object toward the surface of the Earth with an acceleration of 9.8m/s2 ≈
10m/s2. In the absence of air resistance, all objects will fall with the same acceleration. Air resistance can
cause low-mass, large area objects to accelerate more slowly.

• Deceleration is the term used when an object’s speed is decreasing due to an acceleration in the opposite
direction of its velocity.

• The Big Three equations define the graphs of position and velocity as a function of time. When there is no
acceleration (constant velocity), position increases linearly with time – distance equals rate times time. Under
constant acceleration, velocity increases linearly with time but distance does so at a quadratic rate. The slopes
of the position and velocity graphs will give instantaneous velocity and acceleration, respectively.

• At first, you might get frustrated trying to figure out which of the Big Three equations to use for a certain
problem, but don’t worry, this comes with practice. Making a table that identifies the variables given in the
problem and the variables you are looking for can sometimes help.
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4.5 One Dimensional Examples

Example 1

Question: If Bob walks 100 meters north, turns around, and walks 100 meters south, what is his total distance d and
displacement ∆~x?

Solution: If Bob walked 100 meters in north, turned around, and walked back to his starting position his total
distance traveled would be:

d = |∆~x1|+|∆~x2|= |100m|+|−100m|= 200m.

However, his displacement would be:

f - _i = 0 m + 0 m = 0 m. ∆~x =~x

As you can see, if Bob returns to his original starting position his displacement (0 meters) and his total distance
traveled (200 meters) are very different.

Example 2

Question: Joe throws a ball straight up with a initial velocity of 70 m
s . For this problem ignore Joe’s height.

a) How high does the ball go?

b) For how many seconds is the ball in the air?

c) Joe is now standing underneath a ceiling that is 237m high. How fast will the ball be traveling when it strikes the
ceiling?

Solution:

a) We know the initial velocity (70m/s2) and the acceleration (the only acceleration that acts upon the ball after it has
left Joe’s hand is the acceleration of gravity, which is −9.8m/s2). We can figure out the final velocity by realizing
that when the ball is at the highest point, the velocity will be 0m/s2. To find the height of the ball we will use the
equation v f

2 = vi
2 +2ax and solve for x.
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v f
2 = vi

2 +2ax⇒
v f

2− vi
2

2a
= x

We can now substitute in the known values to get x.

v f
2− vi

2

2a
=

(0m/s−702m/s)
2× (−9.8m/s2)

= 250m

b) To solve for the total time the ball is in the air we will for the time that the ball is traveling up and double it (the
trip down will take the same time as the trip up). We know the initial velocity is 70m/s and the acceleration due to
gravity is −9.8m/s2. We also know that the final velocity is 0m/s. We will use the equation v f = vi +at and solve
for t.

v f = vi +at⇒
v f − vi

a
= t

We can now substitute what we know into the equation to solve for t.

v f − vi

a
=

0m/s−70m/s
−9.8m/s2 = 7sec

Remember that this is only the trip up though. To solve for the total time the ball in the air we simply double the
answer.

7sec×2 = 14sec

c) We know the ceiling height (237m), the initial velocity (70m/s), and the acceleration (−9.8m/s2). Using the
equation v f

2 = vi
2 +2ax, we can solve for v.

v f
2 = vi

2 +2ax⇒ v f =
√

vi
2 +2ax

We can now find the velocity.

√
vi

2 +2ax =
√

702m/s+2× (−9.8m/s2)× (237m) = 16m/s

Example 3

Question: Two cars are heading toward each other, traveling at 50km/hr (car A) and 70km/hr (car B). They are 12km
apart. How much time do they have before they collide?

Answer: To find the answer, we must find the proportion of the distance that each car travels. In the time that car A
travels 50km, car B will travel 70km. This can be made into the ratio 50

70 which can then be simplified into 5
7 . This
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means that car A travels 5
12 (which is 5km) of the distance and car B travels 7

12 (which is 7km) of the distance. Car
B takes

50km/hr× t = 5km⇒ t =
5km

50km/hr
⇒ t = .1hr = 6min

to cover 5km. Car A takes

70km/hr× t = 7km⇒ t =
7km

70km/hr
⇒ t = .1hr = 6min

to cover 7km. Therefore the time before the collision is 6 minutes.
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4.6 One-Dimensional Motion Problem Set

1. Answer the following questions about one-dimensional motion.

a. What is the difference between distance d and displacement4x Write a few sentences explaining this.
b. Does the odometer reading in a car measure distance or displacement?
c. Imagine a fox darting around in the woods for several hours. Can the displacement 4x of the fox from

his initial position ever be larger than the total distance d he traveled? Explain.
d. What is the difference between acceleration and velocity? Write a paragraph that would make sense to a

5th grader.
e. Give an example of a situation where an object has an upward velocity, but a downward acceleration.
f. What is the difference between average and instantaneous velocity? Make up an example involving a

trip in a car that demonstrates your point.
g. If the position of an object is increasing linearly with time (i.e., 4x is proportional to t), what can we

say about its acceleration? Explain your thinking.
h. If the position of an object is increasing non-linearly with time (i.e., 4x is not proportional to t), what

can we say about its velocity? Explain your thinking.

2. A cop passes you on the highway. Which of the following statements must be true at the instant he is passing
you? You may choose more than one answer.

a. Your speed and his speed are the same.
b. Your position x along the highway is the same as his position x along the highway.
c. Your acceleration and his acceleration are the same.

3. If a car is slowing down from 50 MPH to 40 MPH, but the x position is increasing, which of the following
statements is true? You may choose more than one.

a. The velocity of the car is in the +x direction.
b. The acceleration of the car is in the same direction as the velocity.
c. The acceleration of the car is in the opposite direction of the velocity.
d. The acceleration of the car is in the −x direction.

4. A horse is galloping forward with an acceleration of 3 m/s2. Which of the following statements is necessarily
true? You may choose more than one.

a. The horse is increasing its speed by 3 m/s every second, from 0 m/s to 3 m/s to 6 m/s to 9 m/s.
b. The speed of the horse will triple every second, from 0 m/s to 3 m/s to 9 m/s to 27 m/s.
c. Starting from rest, the horse will cover 3 m of ground in the first second.
d. Starting from rest, the horse will cover 1.5 m of ground in the first second.

5. Below are images from a race between Ashaan (above) and Zyan (below), two daring racecar drivers. High
speed cameras took four pictures in rapid succession. The first picture shows the positions of the cars at
t = 0.0. Each car image to the right represents times 0.1,0.2, and 0.3 seconds later.

a. Who is ahead at t = 0.2 s ? Explain.
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b. Who is accelerating? Explain.
c. Who is going fastest at t = 0.3 s? Explain.
d. Which car has a constant velocity throughout? Explain.
e. Graph x vs. t and v vs. t. Put both cars on same graph; label which line is which car.
f. Which car is going faster at t = 0.2 s (Hint: Assume they travel the same distance between 0.1 and 0.2

seconds)?

6. In the picture below, a ball starting at rest rolls down a ramp, goes along at the bottom, and then back up a
smaller ramp. Ignore friction and air resistance. Sketch the vertical position vs. time and vertical speed vs.
time graphs that accurately describe this motion. Label your graphs with the times indicated in the picture.

7. Draw the position vs. time graph that corresponds to the velocity vs. time graph below. You may assume a
starting position x0 = 0. Label both axes of your graph with appropriate values.

8. Two cars are heading right towards each other, but are 12 km apart. One car is going 70 km/hr and the other
is going 50 km/hr. How much time do they have before they collide head on?

9. The following data represent the first 30 seconds of actor Crispin Glover’s drive to work.

TABLE 4.1:

Time (s) Position (m) Distance (m)
0 0 0
5 10 10
10 30 30
15 30 30
20 20 40
25 50 70
30 80 120

(a) Sketch the graphs of position vs. time and distance vs. time. Label your x and y axes appropriately.

(b) Why is there a discrepancy between the distance covered and the change in position during the time period
between t = 25 s and t = 30 s?

(c) What do you think is going on between t = 10 s and t = 15 s?
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(d) What is the displacement between t = 10 s and t = 25 s?

(e) What is the distance covered between t = 10 s and t = 25 s?

(f) What is the average velocity during the first 30 seconds of the trip?

(g) What is the average velocity between the times t = 20 s and t = 30 s?

(h) During which time interval(s) was the velocity negative?

(i) Sketch the velocity vs. time and speed vs. time graphs. Label your x and y axes appropriately.

10. Sketchy LeBaron, a used car salesman, claims his car is able to go from 0 to 60 mi/hr in 3.5 seconds.

a. What is the average acceleration of this car? Give your answer in m/s2. (Hint: you will have to perform
a conversion.)

b. How much distance does this car cover in these 3.5 seconds? Express your answer twice: in meters and
in feet.

c. What is the speed of the car in mi/hr after 2 seconds?

11. Michael Jordan had a vertical jump of about 48 inches.

a. Convert this height into meters.
b. Assuming no air resistance, at what speed did he leave the ground?
c. What is his speed 3/4 of the way up?
d. What is his speed just before he hits the ground on the way down?

12. You are sitting on your bike at rest. Your brother comes running at you from behind at a speed of 2 m/s. At
the exact moment he passes you, you start up on your bike with an acceleration of 2 m/s2.

a. Draw a picture of the situation, defining the starting positions, speeds, etc.
b. At what time t do you have the same speed as your brother?
c. At what time t do you pass your brother?
d. Draw another picture of the exact moment you catch your brother. Label the drawing with the positions

and speeds at that moment.
e. Sketch a position vs. time graph for both you and your brother, labeling the important points (i.e., starting

point, when you catch him, etc.)
f. Sketch a speed vs. time graph for both you and your brother, labeling the important points (i.e., starting

point, when you catch him, etc.)

13. You are standing at the foot of the Bank of America building in San Francisco, which is 52 floors (237 m)
high. You launch a ball straight up in the air from the edge of the foot of the building. The initial vertical
speed is 70 m/s. (For this problem, you may ignore your own height, which is very small compared to the
height of the building.)

a. How high up does the ball go?
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b. How fast is the ball going right before it hits the top of the building?
c. For how many seconds total is the ball in the air?

14. Measure how high you can jump vertically on Earth. Then, figure out how high you would be able to jump
on the Moon, where acceleration due to gravity is 1/6th that of Earth. Assume you launch upwards with the
same speed on the Moon as you do on the Earth.

15. A car is smashed into a wall during Weaverville’s July 4th Destruction Derby. The car is going 25 m/s just
before it strikes the wall. It comes to a stop 0.8 seconds later. What is the average acceleration of the car
during the collision?

16. A helicopter is traveling with a velocity of 12 m/s directly upward. Directly below the helicopter is a very
large and very soft pillow. As it turns out, this is a good thing, because the helicopter is lifting a large man.
When the man is 20 m above the pillow, he lets go of the rope.

a. What is the speed of the man just before he lands on the pillow?
b. How long is he in the air after he lets go?
c. What is the greatest height reached by the man above the ground? (Hint: this should be greater than

20 m. Why?)
d. What is the distance between the helicopter and the man three seconds after he lets go of the rope?

17. You are speeding towards a brick wall at a speed of 55 MPH. The brick wall is only 100 feet away.

a. What is your speed in m/s?
b. What is the distance to the wall in meters?
c. What is the minimum acceleration you should use to avoid hitting the wall?

18. What acceleration should you use to increase your speed from 10 m/s to 18 m/s over a distance of 55 m?
19. You drop a rock from the top of a cliff. The rock takes 3.5 seconds to reach the bottom.

a. What is the initial speed of the rock?
b. What is the magnitude (i.e., numerical value) of the acceleration of the rock at the moment it is dropped?
c. What is the magnitude of the acceleration of the rock when it is half-way down the cliff?
d. What is the height of the cliff?

20. An owl is flying along above your farm with positions and velocities given by the formulas

x(t) = 5.0+0.5t +(1/2)(0.3)t2; where t is in seconds and x is in meters from the barn;

v(t) = 0.5+(0.3)t where v is m/s

(a) What is the acceleration of the owl?
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(b) What is the speed of the owl at t = 0?

(c) Fill in the missing elements of the table.

TABLE 4.2:

t x v
0.0 s 5 m .5 m/s
1.0 s 5.65 m .8 m/s
2.0 s 6.6 m 1.1 m/s
3.0 s
4.0 s
5.0 s
6.0 s
7.0 s
8.0 s
9.0 s
10.0 s

(d) Plot the x and t points on the following graph. Then, connect your points with a smoothly curving line. Be
careful and neat and use pencil.

(e) Use the formula to calculate the speed of the owl in m/s at t = 5 seconds.

(f) Lightly draw in a tangent to your curve at the t = 5 s point. Then, measure the slope of this tangent by measuring
the rise (in meters) and the run (in seconds). What is the slope in m/s?

(g) Were your answers to the last two parts the same? If so, why? If not, why not?

(h) Fill in the following table. This is going to be harder to do, because you are given x or v and are expected to find
t. You may have to use the quadratic formula!

TABLE 4.3:

t x v
2.6 m/s
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TABLE 4.3: (continued)

t x v
17.1 m

3.14 m/s
31.4 m

5.41 m/s

21. For each of the following graphs, write a few sentences about what kind of motions were made. Try to use the
words we have defined in class (speed, velocity, position, acceleration) in your description.

Answers to Selected Problems

1. .
2. .
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3. .
4. .

1. Zyan
2. Ashaan is accelerating because the distance he travels every 0.1 seconds is increasing, so the speed must

be increasing
3. Ashaan
4. Zyan
5. Ashaan

5. .
6. .
7. 6 minutes
8. (d) 20 meters (e) 40 meters (f) 2.67 m/s (g) 6 m/s (h) Between t = 15 s and t = 20 sec because your position

goes from x = 30 m to x = 20m. (i) You made some sort of turn

1. 7.7 m/s2

2. 47 m,150 feet
3. 34 m/s

1. 1.22 m
2. 4.9 m/s
3. 2.46 m/s
4. −4.9 m/s

9. (b) 1 second (c) at 2 seconds (d) 4m

1. 250 m
2. 13 m/s,−13 m/s
3. 14 s for round trip

10. Let’s say we can jump 20 feet (6.1 m) in the air. ? Then, on the moon, we can jump 36.5 m straight up.
11. −31m/s2

1. 23 m/s
2. 3.6 seconds
3. 28 m
4. 45m

1. 25 m/s
2. 30 m
3. 2.5 m/s2

12. 2 m/s2

1. v0 = 0
2. 10 m/s2

3. −10 m/s2

4. 60 m

1. 0.3 m/s2

2. 0.5 m/s
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5.1 The Big Idea

In this chapter, we explore the motion of projectiles under the influence of gravity — fired cannonballs, thrown
basketballs, and other objects that have no way of propelling themselves and do not experience significant air
resistance. From chapter 1, we know that vectors can be separated into components; if they are separated into
perpendicular components the motion along each component can be treated independently (figure 1).

This is the insight that allows us to solve two dimensional projectile motion problems: we break any initial velocity
vector into a component parallel to the ground and a component perpendicular to it. The force of gravity — which
will be explained in more detail later — accelerates any object near the surface of the earth toward its center at a rate
of g = 9.8m/s2. This acceleration is in the direction perpendicular to the surface of the earth, conventionally labeled
y.

Since in projectile motion under the sole influence of gravity any acceleration the object experiences is in the y
direction, its horizontal, or x, velocity remains constant throughout its flight (at least in the absence of air resistance,
which we ignore for the time being). To solve two dimensional motion problems, we apply the kinematics equations
of one-dimensional motion to each of the two directions. In the y direction, we can use the uniform acceleration
equations to solve for time in flight. Using this time, we can find how far the object traveled in the x direction also.
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5.2 Solving Two Dimensional Motion Problems

Break the Initial Velocity into its Components

Apply the Kinematics Equations

Vertical Direction Horizontal Direction

y(t) = yi + viyt− 1
2 gt2 x(t) = xi + vixt

vy(t) = viy−gt vx(t) = vix

vy
2 = v0y

2−2g(∆y)

ay =−g =−9.8m/s2 ≈−10m/s2 ax = 0
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5.3 Key Concepts

• In projectile motion, the horizontal displacement of an object from its starting point is called its range.

• Vertical (y) speed is zero only at the highest point of a thrown object’s flight.

• To work these problems, separate the “Big Three” equations into two sets: one for the vertical direction, and
one for the horizontal. Keep them separate.

• The only variable that can go into both sets of equations is time. You use time to communicate between the
two directions.

• Since in the absence of air resistance there is no acceleration in the horizontal direction, this component of
velocity does not change over time. This is a counter-intuitive notion for many. (Air resistance will cause
velocity to decrease slightly or significantly depending on the object. But this factor is ignored for the time
being.)

• Motion in the vertical direction must include the acceleration due to gravity, and therefore the velocity in the
vertical direction changes over time.

• The shape of the path of an object undergoing projectile motion in two dimensions is a parabola.
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5.4 Two Dimensional Example

Example 1

Question: A ball of mass m is moving horizontally with a speed of vi off a cliff of height h. How much time does it
take the ball to travel from the edge of the cliff to the ground? Express your answer in terms of g (acceleration due
to gravity) and h (height of the cliff).

Solution: Since we are solving for the time, any motion in the x direction is not pertinent. We can just use the
equation

f =~v

i + t
~v

f=_i + t

and solve for t. Notice though that viy, the ball’s initial velocity in the y direction, is equal to zero when the ball rolls
of the cliff. We can therefore disregard it; we have:

vyf = ayt

Therefore,

t =
vyf

a

Though we have solved for t, we have not solved for it in terms of the given quantities We can replace a with g
because the only acceleration on the ball is due to gravity. We now need to replace vyf with some combination of h
and g. Using the equation

fv

^2=v_i^2+2ax,

we can solve for v

f^2 inthetermswanted.Notethat x heredenotesthedistancetraveledbytheob ject,or h .Itisn′tthehorizontal x .Because
v_yi^2=0 ,wecanonceagaindisregardit.Wenowreplace x with h and a with g .T hisgivesusBecausewehavesolved f or
v_f^2 wewillmaketheotherequation−−−theonesolved f or t−−−alsocontain v_f^2 .Speci f ically,Nowwecansubstitute
2gh f or v_f^2 .Wecanthensolve f ortheanswer :
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5.5 Two Dimensional Motion Problem Set

Draw detailed pictures for each problem (putting in all the data, such as initial velocity, time, etc.), and write down
your questions when you get stuck.

1. Determine which of the following is in projectile motion. Remember that “projectile motion” means that
gravity is the only means of acceleration for the object.

a. A jet airplane during takeoff.
b. A baseball during a Barry Bonds home run.
c. A spacecraft just after all the rockets turn off in Earth orbit.
d. A basketball thrown towards a basket.
e. A bullet shot out of a gun.
f. An inter-continental ballistic missile.
g. A package dropped out of an airplane as it ascends upward with constant speed.

2. Decide if each of the statements below is True or False. Then, explain your reasoning.

a. At a projectile’s highest point, its velocity is zero.
b. At a projectile’s highest point, its acceleration is zero.
c. The rate of change of the x position is changing with time along the projectile path.
d. The rate of change of the y position is changing with time along the projectile path.
e. Suppose that after 2 s, an object has traveled 2 m in the horizontal direction. If the object is in projectile

motion, it must travel 2 m in the vertical direction as well.
f. Suppose a hunter fires his gun. Suppose as well that as the bullet flies out horizontally and undergoes

projectile motion, the shell for the bullet falls directly downward. Then, the shell hits the ground before
the bullet.

3. Imagine the path of a soccer ball in projectile motion. Which of the following is true at the highest point in its
flight?

a. vx = 0,vy = 0,ax = 0,ay = 0.
b. vx > 0,vy = 0,ax = 0,ay = 0.
c. vx = 0,vy = 0,ax = 0,ay =−9.8 m/s2.
d. vx > 0,vy = 0,ax = 0,ay =−9.8 m/s2.
e. vx = 0,vy = 0,ax = 0,ay =−9.8 m/s2.

4. A hunter with an air blaster gun is preparing to shoot at a monkey hanging from a tree. He is pointing his gun
directly at the monkey. The monkey’s got to think quickly! What is the monkey’s best chance to avoid being
smacked by the rubber ball?

a. The monkey should stay right where he is: the bullet will pass beneath him due to gravity.
b. The monkey should let go when the hunter fires. Since the gun is pointing right at him, he can avoid

getting hit by falling to the ground.
c. The monkey should stay right where he is: the bullet will sail above him since its vertical velocity

increases by 9.8 m/s every second of flight.
d. The monkey should let go when the hunter fires. He will fall faster than the bullet due to his greater

mass, and it will fly over his head.

5. You are riding your bike in a straight line with a speed of 10 m/s. You accidentally drop your calculator out
of your backpack from a height of 2.0 m above the ground. When it hits the ground, where is the calculator in
relation to the position of your backpack? (Neglect air resistance.)

a. You and your backpack are 6.3 m ahead of the calculator.
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b. You and your backpack are directly above the calculator.
c. You and your backpack are 6.3 m behind the calculator.
d. None of the above.

6. A ball of mass m is moving horizontally with speed v0 off a cliff of height h, as shown. How much time does
it take the rock to travel from the edge of the cliff to the ground?

a.
√

hv0.
b. h

v0
.

c. hv0
g .

d. 2h
g .

e.

√
2h
g

.

7. Find the missing legs or angles of the triangles shown.

8. Draw in the x− and y−velocity components for each dot along the path of the cannonball. The first one is
done for you.

9. A stone is thrown horizontally at a speed of 8.0 m/s from the edge of a cliff 80 m in height. How far from the
base of the cliff will the stone strike the ground?

10. A toy truck moves off the edge of a table that is 1.25 m high and lands 0.40 m from the base of the table.

a. How much time passed between the moment the car left the table and the moment it hit the floor?
b. What was the horizontal velocity of the car when it hit the ground?

11. A hawk in level flight 135 m above the ground drops the fish it caught. If the hawk’s horizontal speed is
20.0 m/s, how far ahead of the drop point will the fish land?
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12. A pistol is fired horizontally toward a target 120 m away, but at the same height. The bullet’s velocity is
200 m/s. How long does it take the bullet to get to the target? How far below the target does the bullet hit?

13. A bird, traveling at 20 m/s, wants to hit a waiter 10 m below with his dropping (see image). In order to hit the
waiter, the bird must release his dropping some distance before he is directly overhead. What is this distance?

14. Joe Nedney of the San Francisco 49ers kicked a field goal with an initial velocity of 20 m/s at an angle of
60◦.

a. How long is the ball in the air? Hint: you may assume that the ball lands at same height as it starts at.
b. What are the range and maximum height of the ball?

15. A racquetball thrown from the ground at an angle of 45◦ and with a speed of 22.5 m/s lands exactly 2.5 s later
on the top of a nearby building. Calculate the horizontal distance it traveled and the height of the building.

16. Donovan McNabb throws a football. He throws it with an initial velocity of 30 m/s at an angle of 25◦. How
much time passes until the ball travels 35 m horizontally? What is the height of the ball after 0.5 seconds?
(Assume that, when thrown, the ball is 2 m above the ground.)

17. Pablo Sandoval throws a baseball with a horizontal component of velocity of 25 m/s. After 2 seconds, the ball
is 40 m above the release point. Calculate the horizontal distance it has traveled by this time, its initial vertical
component of velocity, and its initial angle of projection. Also, is the ball on the way up or the way down at
this moment in time?

18. Barry Bonds hits a 125 m(450′) home run that lands in the stands at an altitude 30 m above its starting altitude.
Assuming that the ball left the bat at an angle of 45◦ from the horizontal, calculate how long the ball was in
the air.

19. A golfer can drive a ball with an initial speed of 40.0 m/s. If the tee and the green are separated by 100 m, but
are on the same level, at what angle should the ball be driven? ( Hint: you should use 2cos(x)sin(x) = sin(2x)
at some point.)

20. How long will it take a bullet fired from a cliff at an initial velocity of 700 m/s, at an angle 30◦ below the
horizontal, to reach the ground 200 m below?

21. A diver in Hawaii is jumping off a cliff 45 m high, but she notices that there is an outcropping of rocks 7 m
out at the base. So, she must clear a horizontal distance of 7 m during the dive in order to survive. Assuming
the diver jumps horizontally, what is his/her minimum push-off speed?

22. If Monte Ellis can jump 1.0 m high on Earth, how high can he jump on the moon assuming same initial
velocity that he had on Earth (where gravity is 1/6 that of Earth’s gravity)?

23. James Bond is trying to jump from a helicopter into a speeding Corvette to capture the bad guy. The car is
going 30.0 m/s and the helicopter is flying completely horizontally at 100 m/s. The helicopter is 120 m above
the car and 440 m behind the car. How long must James Bond wait to jump in order to safely make it into the
car?
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24. A field goal kicker lines up to kick a 44 yard (40 m) field goal. He kicks it with an initial velocity of 22 m/s
at an angle of 55◦. The field goal posts are 3 meters high.

a. Does he make the field goal?
b. What is the ball’s velocity and direction of motion just as it reaches the field goal post (i.e., after it has

traveled 40 m in the horizontal direction)?

25. In a football game a punter kicks the ball a horizontal distance of 43 yards (39 m). On TV, they track the hang
time, which reads 3.9 seconds. From this information, calculate the angle and speed at which the ball was
kicked. (Note for non-football watchers: the projectile starts and lands at the same height. It goes 43 yards
horizontally in a time of 3.9 seconds)

Answers to Selected Problems

1. .
2. .
3. .
4. .
5. .
6. .
7. a. 13 m b. 41 degrees c. vy = 26 m/s;vx = 45 m/s d. 56 degrees, 14 m/s
8. .
9. 32 m

10. a. 0.5 s b. 0.8 m/s
11. 104 m
12. t = 0.60 s,1.8 m below target
13. 28 m.

51

http://www.ck12.org


5.5. Two Dimensional Motion Problem Set www.ck12.org

14. a. 3.5 s. b. 35 m;15 m
15. 40 m;8.5 m
16. 1.3 seconds, 7.1 meters
17. 50 m;v0y = 30 m/s;500; on the way up
18. 4.4 s
19. 19◦

20. 0.5 s
21. 2.3 m/s
22. 6 m
23. 1.4 seconds
24. a. yes b. 14 m/s @ 23 degrees from horizontal
25. 22 m/s @ 62 degrees
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6.1 The Big Idea

In the previous chapters, we studied the behavior of accelerating objects in one and two dimensions. We did not,
however, address the issue of where the acceleration comes from: in other words, why, in certain situations, do the
velocities of objects change? It might make sense that a cart moves if I push it, but what about a dropped object: is
it accelerating for a different reason, or for the same one? Is there something common to all accelerating objects?

Building on the insights of scientists before him, Isaac Newton created a mathematical analysis of moving and
accelerating objects; the rules he discovered are now known as Newton’s Laws of Motion. Newton is a legendary
figure to physicists, and it’s hard to underestimate his influence on the field. Actually, the substance of his Laws had
been summarized by scientists before him. Still, the mathematical framework for their interpretation that Newton
created was a revolutionary achievement, since it unified the existing knowledge of mechanics in a consistent system
and cemented math as the accepted method of interpreting physical phenomena.

Here are Newton’s Laws, in modern English:

Newton’s First Law
Every body continues in its state of rest, or of uniform motion in a right (straight) line, unless it is compelled
to change that state by forces impressed upon it.

Newton’s Second Law
The change of motion is proportional to the motive force impressed; and is made in the direction of the right
(straight) line in which that force is impressed.

Newton’s Third Law
To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each
other are always equal, and directed to contrary parts.

(Taken from the Principia in modern English, Isaac Newton, University of California Press, 1934).
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6.2 Newton’s Laws Explained

The First Law is about inertia; objects at rest stay at rest unless acted upon and objects in motion continue
that motion in a straight line unless acted upon. Prior to Newton and Galileo, the prevailing view on motion was
still Aristotle’s. According to his theory the natural state of things is at rest; force is required to keep something
moving at a constant rate. This made sense to people throughout history because on earth, friction and air resistance
slow moving objects. When there is no air resistance (or other sources of friction), a situation approximated in space,
Newton’s first law is much more evident.

The "motion" Newton mentions in the Second Law is, in his language, the product of the mass and velocity of an
object — we call this quantity momentum — so the Second Law is actually the famous equation:

~F =
∆(m~v)

∆t
=

m∆~v
∆t

= m~a [1]

That is, the acceleration experienced by an object will be proportional to the applied force and inversely proportional
to its mass. If there are multiple forces, they can be added as vectors and it is the net force that matters:

m~a = ~Fnet = ∑
i

~Fi Net force is the vector sum of all the forces

max = Fnet, x = ∑
i

Fix Horizontal components add

may = Fnet, y = ∑
i

Fiy As do vertical ones

When the net force on an object is zero, it is said to be in translational equilibrium:

∑
i

~Fi = 0 Translational Equilibrium Condition [2]

Finally, the Third Law states that you can’t push someone or something without being pushed back. This
law is somewhat confusing: if to each applied force there is an equal and opposite force, why does anything ever
accelerate? The key is that the ‘equal and opposite’ forces act on different objects. If I push a cart, the cart is in turn
pushing on me. However, I’m also pushing (and being pushed by) the earth, through my feet. Therefore, in the end,
the cart and I move in the same direction and the earth moves opposite us. The cart-person system experienced a net
force in one direction, while the earth experienced an equal and opposite force. According to Newton’s second law,
the acceleration objects experience due to applied forces is inversely proportional to their mass; clearly, the earth —
with its gigantic mass — doesn’t move very far compared to the cart and person.

Newton’s Laws Example

Question: Tom and Mary are standing on identical skateboards. Tom and Mary push off of each other and travel in
opposite directions.

a) If Tom (M) and Mary (m) have identical masses, who travels farther?

b) If Tom has a bigger mass than Mary, who goes farther?

c) If Tom and Mary have identical masses and Tom pushes twice as hard as Mary, who goes farther?

55

http://www.ck12.org


6.2. Newton’s Laws Explained www.ck12.org

Solution

a) Neither. Both Tom and Mary will travel the same distance. The forced applied to each person is the same
(Newton’s Third Law). So

��Ma =�ma

which cancels to

a = a

Therefore both people will travel the same distance because the acceleration controls how far someone will travel
and Tom and Mary have equal acceleration.

b) Mary will go farther. Again, the same force is applied to both Mary and Tom so

Ma = ma

Since Tom has the larger mass, his acceleration must be smaller (acceleration and mass are inversely proportional).
Finally, because Mary’s acceleration is greater, she will travel farther.

c) Neither. Newton’s Third Law states that for every action there is an equal and opposite reaction. Therefore if Tom
pushes twice as hard as Mary, Mary will essentially be pushing back with the same strength. They will therefore
travel the same distance.
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6.3 What are Forces?

In other words, things tend to stay in the their current state of motion unless some "forces" are "impressed" on them.
But where do such forces come from? What are they? Force isn’t a real object, but rather a concept used to
describe actions. We can think of it as the cause of any kind of "pushing" or "pulling" that an object experiences.
As long as we can measure them consistently, forces can be treated like any other physical vector quantity. One way
to state a major goal of physics is to find a method for consistently predicting the forces an object will experience
under any circumstances, based on the circumstances. At this point, physicists have identified four basic forces that
govern the universe:

• The strong force: The most powerful of the four forces, it holds nuclei together in atoms — but has a very
short range. It has to overcome the massive electromagnetic repulsion between protons in a nucleus.

• The electromagnetic force: Responsible for the behavior of charged particles. Has infinite range.
• The weak force: Another nuclear force, responsible for much of the structure of stars and the universe in

general. Its range is longer than that of the strong force, but still smaller than an atom.
• Gravity: Responsible for the attraction of all masses in the universe. Has infinite range.

All others — friction, air resistance, and other contact forces; buoyancy; the spring force — can be reduced to these
fundamental forces. The fundamental forces are covered in more detail in later chapters.

Note that this classification does not tell us anything about where these forces come from, or how they are able to
act seemingly at a distance, with "no strings attached". Newton himself said:

I have not as yet been able to discover the reason for these properties of gravity from phenomena, and I do not feign
hypotheses.

In other words, we are interested in describing and predicting nature, rather than explaining its root causes. Forces
acting a distance may seem strange in light of our experience with forces that we can apply to things (like pushing
on rocks, etc), but to Newton asking about the nature of gravity was like asking about the nature of mass: it’s just
there, we can measure it, and that’s it.
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6.4 Common Forces

Universal Gravity

In previous chapters we learned that gravity — near the surface of planets, at least — is a force that accelerates
objects at a constant rate. At this point we can extend this description using the framework of Newton’s Laws.

Newton’s Laws apply to all forces; but when he developed them only one was known: gravity. Newton’s major
insight — and one of the greatest in the history of science — was that the same force that causes objects to fall when
released is also responsible for keeping the planets in orbit. According to some sources, he realized this while taking
a stroll through some gardens and witnessing a falling apple.

After considering the implications of this unification, Newton formulated the Law of Universal Gravitation: Any
two objects in the universe, with masses m1 and m2 with their centers of mass at a distance r apart will experience a
force of mutual attraction along the line joining their centers of mass equal to:

~FG =
Gm1m2

r2 Universal Gravitation [3],

where G is the Gravitational constant:

G = 6.67300×10−11m3kg−1s−2

Here is an illustration of this law for two objects, for instance the earth and the sun:

Gravity on the Earth’s Surface

In the chapter on energy, we saw that the gravitational potential energy formula for objects near earth, Ug = mgh,
is a special case of a more general result. It so happens that the fact that gravity accelerates near earth objects at a
constant rate is an almost identical result.

On the surface of a planet — such as earth — the r in formula [3] is very close to the radius of the planet, since a
planet’s center of mass is — usually — at its center. It also does not vary by much: for instance, the earth’s radius is
about 6,000 km, while the heights we consider for this book are on the order of at most a few kilometers — so we
can say that for objects near the surface of the earth, the r in formula [3] is constant and equal to the earth’s radius.
This allows us to say that gravity is more or less constant on the surface of the earth. Here’s an illustration:
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For any object a height h above the surface of the earth, the force of gravity may be expressed as:

~FG =
Gmearthmob j

(rearth +h)2 [4]

Now we make the approximation that

rearth +h≈ rearth

then, we can rewrite [4] as

~FG =
Gmearth

r2
earth︸     ︷︷     ︸
~gearth

×mob j = mob j×~g [4] Gravity on Earth

We can do this because the quantity in braces only has constants; we can combine them and call their product g.
Remember, this is an approximation that holds only when the r in formula [3] is more or less constant.

We call the quantity mg an object’s weight. Weight is different from mass — which is identical everywhere — since
it depends on the gravitational force an object experiences. In fact, weight is the magnitude of that force. To find the
weight of an object on another planet, star, or moon, use the appropriate values in formula [4].

Normal Force

Often, objects experience gravitational attraction but cannot move closer together because they are in contact. For
instance, when you stand on the surface of the earth you are obviously not accelerating toward its center. According
to Newton’s Laws, there must be a force opposing gravity, so that the net force on both objects is zero. We call such
a force the Normal Force. It is actually electromagnetic in nature (like other contact forces), and arises due to the
repulsion of atoms in the two objects. Here is an illustration of the Normal force on a block sitting on earth:
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Gravity and Normal Force Example

Question: A woman of mass 70.0 kg weighs herself in an elevator.

a) If she wants to weigh less, should she weigh herself when accelerating upward or downward? b) When the
elevator is not accelerating, what does the scale read (i.e., what is the normal force that the scale exerts on the
woman)? c) When the elevator is accelerating upward at 2.00 m/s2, what does the scale read?

Answer a) If she wants to weigh less, she has to decrease her force (her weight is the force) on the scale. We will
use the equation

F = ma
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to determine in which situation she exerts less force on the scale.

If the elevator is accelerating upward then the acceleration would be greater. She would be pushed toward the floor
of the elevator making her weight increase. Therefore, she should weigh herself when the elevator is going down.

b) When the elevator is not accelerating, the scale would read 70.0kg.

c) If the elevator was accelerating upward at a speed of 2.00m/s2, then the scale would read

F = ma = 70kg× (9.8m/s2 +2m/s2) = 826N

which is 82.6kg.

Tension

Another force that often opposes gravity is known as tension. This force is provided by wires and strings when
they hold objects above the earth. Like the Normal Force, it is electromagnetic in nature and arises due to the
intermolecular bonds in the wire or string:

If the object is in equilibrium, tension must be equal in magnitude and opposite in direction to gravity. This force
transfers the gravity acting on the object to whatever the wire or string is attached to; in the end it is usually a Normal
Force — between the earth and whatever the wire is attached to — that ends up balancing out the force of gravity on
the object.

Friction

Friction is a force that opposes motion. Any two objects in contact have what is called a mutual coefficient of
friction. To find the force of friction between them, we multiply the normal force by this coefficient. Like the forces
above, it arises due to electromagnetic interactions of atoms in two objects. There are actually two coefficients of
friction: static and kinetic. Static friction will oppose initial motion of two objects relative to each other. Once
the objects are moving, however, kinetic friction will oppose their continuing motion. Kinetic friction is lower than
static friction, so it is easier to keep an object in motion than to set it in motion.

fs ≤ µs|~FN | [5] Static friction opposes potential motion of surfaces in contact

fk = µk|~FN | [6] Kinetic frictions opposes motion of surfaces in contact

61

http://www.ck12.org


6.4. Common Forces www.ck12.org

There are some things about friction that are not very intuitive:

• The magnitude of the friction force does not depend on the surface areas in contact.
• The magnitude of kinetic friction does not depend on the relative velocity or acceleration of the two objects.
• Friction always points in the direction opposing motion. If the net force (not counting friction) on an object is

lower than the maximum possible value of static friction, friction will be equal to the net force in magnitude
and opposite in direction.

Spring Force

Finally, the last force we will cover is that exerted by a stretched spring. Any spring has some equilibrium length,
and if stretched in either direction it will push or pull with a force equal to:

~Fsp =−k~∆x [7] Force of spring ~∆x from equilibrium

Spring Example

Question: A spring with a spring constant of k = 400N/m has an uncompressed length of .23m and a fully
compressed length of .15m. What is the force required to fully compress the spring?

Solution: We will use the equation

F = kx

to solve this. We simply have to plug in the known value for the spring and the distance to solve for the force.

F = kx = (400N/m)(.23m− .15m) = 32N
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6.5 Short Summary

• An object will not change its state of motion (i.e., accelerate) unless an unbalanced force acts on it. Equal and
oppositely directed forces on the same object do not produce acceleration.

• The force of gravity is called weight. Near the surface of a planet, it has magnitude mg and is directed
perpendicular to its surface. This g is different from the Gravitational Constant, and differs from planet to
planet.

• Your mass does not change when you move to other planets — although your weight does — because mass is
a measure of how much matter your body contains, and not how much gravitational force you feel.

• To calculate the net force on an object, you need to calculate all the individual forces acting on the object and
then add them as vectors.

• Newton’s Third Law states for every force there is an equal but opposite reaction force. To distinguish a third
law pair from merely oppositely directed pairs is difficult, but very important. Third law pairs must obey three
rules: (1) Third law force pairs must be of the same type of force. (2) Third law force pairs are exerted on two
different objects. (3) Third law force pairs are equal in magnitude and oppositely directed. Example: A block
sits on a table. The Earth’s gravity on the block and the force of the table on the block are equal and opposite.
But these are not third law pairs, because they are both on the same object and the forces are of different
types. The proper third law pairs are: (1) earth’s gravity on block/block’s gravity on earth and (2) table pushes
on block/ block pushes on table.
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6.6 Free-Body Diagram Example

Question: Using the diagram below, find the net force on the block. The block weighs 3kg and the inclined plane
has a coefficient of friction of .6.

Answer:

The first step to solving a Newton’s Laws problem is to identify the object in question. In our case, the block on the
slope is the object of interest.

Next, we need to draw a free-body diagram. To do this, we need to identify all of the forces acting on the block and
their direction. The forces are friction, which acts in the negative x direction, the normal force, which acts in the
positive y direction, and gravity, which acts in a combination of the negative y direction and the positive x direction.
Notice that we have rotated the picture so that the majority of the forces acting on the block are along the y or x axis.
This does not change the answer to the problem because the direction of the forces is still the same relative to each
other. When we have determined our answer, we can simply rotate it back to the original position.

Now we need to break down gravity (the only force not along one of the axises) into its component vectors (which
do follow the axises).

The x component of gravity : 9.8m/s2× cos60 = 4.9m/s2

The y component of gravity : 9.8m/s2× sin60 = 8.5m/s2

Yet these are only the acceleration of gravity so we need to multiply them by the weight of the block to get the force.

F = ma = 3kg×4.9m/s2 = 14.7NF = ma = 3kg×8.5m/s2 = 25.5N
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Now that we have solved for the force of the y-component of gravity we know the normal force (they are equal).
Therefore the normal force is 25.5N. Now that we have the normal force and the coefficient of static friction, we can
find the force of friction.

Fs = µsFN = .6×25.5N = 15.3N

The force of static friction is greater than the component of gravity that is forcing the block down the inclined plane.
Therefore the force of friction will match the force of the x-component of gravity. So the net force on the block is

net force in the x−direction :

x−component o f gravity︷   ︸︸   ︷
14.7N −

f orce o f f riction︷   ︸︸   ︷
14.7N = 0N

net force in the y−direction : 25.5N︸   ︷︷   ︸
Normal Force

− 25.5N︸   ︷︷   ︸
y−component o f gravity

= 0N

Therefore the net force on the block is 0N.
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6.7 Newton’s Laws Problem Set

1. A VW Bug hits a huge truck head-on. Each vehicle was initially going 50 MPH.

a. Which vehicle experiences the greater force?
b. Which experiences the greater acceleration?

2. Is it possible for me to wave my hand and keep the rest of my body perfectly still? Why or why not?
3. How does a rocket accelerate in space, where there is nothing to ’push off’ against?
4. Is there a net force on a hammer when you hold it steady above the ground? If you let the hammer drop,

what’s the net force on the hammer while it is falling to the ground?
5. If an object is moving at constant velocity or at rest, what is the minimum number of forces acting on it (other

than zero)?
6. If an object is accelerating, what is the minimum number of forces acting on it?
7. You are standing on a bathroom scale. Can you reduce your weight by pulling up on your shoes? (Try it.)
8. When pulling a paper towel from a paper towel roll, why is a quick jerk more effective than a slow pull?
9. You and your friend are standing on identical skateboards with an industrial-strength compressed spring in

between you. After the spring is released, it falls straight to the ground and the two of you fly apart.

a. If you have identical masses, who travels farther?
b. If your friend has a bigger mass who goes farther?
c. If your friend has a bigger mass who feels the larger force?
d. If you guys have identical masses, even if you push on the spring, why isn’t it possible to go further than

your friend?

10. Explain the normal force in terms of the microscopic forces between molecules in a surface.
11. A stone with a mass of 10 kg is sitting on the ground, not moving.

a. What is the weight of the stone?
b. What is the normal force acting on the stone?

12. The stone from the last question is now being pulled horizontally along the ground at constant speed in the
positive x direction. Is there a net force on the stone?

13. A spring with spring constant k = 400 N/m has an uncompressed length of 0.23 m. When fully compressed,
it has a length of 0.15 m. What force is required to fully compress the spring?

14. Measuring velocity is hard: for instance, can you tell how fast you’re going around the Sun right now?
Measuring acceleration is comparatively easy — you can feel accelerations. Here’s a clever way to determine
your acceleration. As you accelerate your car on a flat stretch, you notice that the fuzzy dice hanging from
your rearview mirror are no longer hanging straight up and down. In fact, they are making a 30◦ angle with
respect to the vertical. What is your acceleration? (Hint: Draw a FBD. Consider both x and y equations.)

15. Draw free body diagrams (FBDs) for all of the following objects involved (in bold) and label all the forces
appropriately. Make sure the lengths of the vectors in your FBDs are proportional to the strength of the force:
smaller forces get shorter arrows!

a. A man stands in an elevator that is accelerating upward at 2 m/s2.
b. A boy is dragging a sled at a constant speed. The boy is pulling the sled with a rope at a 30◦ angle.
c. Your foot presses against the ground as you walk.
d. The picture shown here is attached to the ceiling by three wires.
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16. Analyze the situation shown here with a big kid pulling a little kid in a wagon. You’ll notice that there are
a lot of different forces acting on the system. Let’s think about what happens the moment the sled begins to
move.

a. First, draw the free body diagram of the big kid. Include all the forces you can think of, including
friction. Then do the same for the little kid.

b. Identify all third law pairs. Decide which forces act on the two body system and which are extraneous.
c. Explain what conditions would make it possible for the two-body system to move forward.

17. Break the force vector F on the right into its x and y components, Fx and Fy.

18. For both figures below, find the net force and its direction (i.e., the magnitude of F = F1 +F2 and the angle it
makes with the x−axis). Draw in F.
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19. Andreas and Kaya are pulling a wagon. Andreas is pulling with a force of 50 N towards the northeast. Kaya is
pulling with a force of 50 N towards the southeast. The wagon has a mass of 23 kg. What is the acceleration
and direction of motion of the wagon?

20. Laura and Alan are pulling a wagon. Laura is pulling with a force of 50 N towards the northeast. Alan is
pulling with a force of 50 N directly east. The wagon has a mass of 23 kg. What is the acceleration and
direction of motion of the wagon?

21. When the 20 kg box shown below is pulled with a force of 100 N, it just starts to move (i.e., the maximum
value of static friction is overcome with a force of 100 N). What is the value of the coefficient of static friction,
µS?

22. A different box, this time 5 kg in mass, is being pulled with a force of 20 N and is sliding with an acceleration
of 2 m/s2. Find the coefficient of kinetic friction, µK .

23. The man is hanging from a rope wrapped around a pulley and attached to both of his shoulders. The pulley is
fixed to the wall. The rope is designed to hold 500 N of weight; at higher tension, it will break. Let’s say he
has a mass of 80 kg. Draw a free body diagram and explain (using Newton’s Laws) whether or not the rope
will break
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24. Now the man ties one end of the rope to the ground and is held up by the other. Does the rope break in this
situation? What precisely is the difference between this problem and the one before?

25. For a boy who weighs 500 N on Earth what are his mass and weight on the moon (where g = 1.6 m/s2)?
26. A woman of mass 70.0 kg weighs herself in an elevator.

a. If she wants to weigh less, should she weigh herself when accelerating upward or downward?
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b. When the elevator is not accelerating, what does the scale read (i.e., what is the normal force that the
scale exerts on the woman)?

c. When the elevator is accelerating upward at 2.00 m/s2, what does the scale read?

27. A crane is lowering a box of mass 50 kg with an acceleration of 2.0 m/s2.

a. Find the tension FT in the cable.
b. If the crane lowers the box at a constant speed, what is the tension FT in the cable?

28. The large box on the table is 30 kg and is connected via a rope and pulley to a smaller 10 kg box, which is
hanging. The 10 kg mass is the highest mass you can hang without moving the box on the table. Find the
coefficient of static friction µS.

29. Find the mass of the painting. The tension in the leftmost rope is 7.2 N, in the middle rope it is 16 N, and in
the rightmost rope it is 16 N.

30. Find Brittany’s acceleration down the frictionless waterslide in terms of her mass m, the angle θ of the incline,
and the acceleration of gravity g.
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31. The physics professor holds an eraser up against a wall by pushing it directly against the wall with a completely
horizontal force of 20 N. The eraser has a mass of 0.5 kg. The wall has coefficients of friction µS = 0.8 and
µK = 0.6.

a. Draw a free body diagram for the eraser.
b. What is the normal force FN acting on the eraser?
c. What is the frictional force FS equal to?
d. What is the maximum mass m the eraser could have and still not fall down?
e. What would happen if the wall and eraser were both frictionless?

32. A tractor of mass 580 kg accelerates up a 10◦ incline from rest to a speed of 10 m/s in 4 s. For all of answers
below, provide a magnitude and a direction.
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a. What net force Fnet has been applied to the tractor?
b. What is the normal force, FN on the tractor?
c. What is the force of gravity Fg on the tractor?
d. What force has been applied to the tractor so that it moves uphill?
e. What is the source of this force?

33. A heavy box (mass 25 kg) is dragged along the floor by a kid at a 30◦ angle to the horizontal with a force of
80 N (which is the maximum force the kid can apply).

a. Draw the free body diagram.
b. What is the normal force FN?
c. Does the normal force decrease or increase as the angle of pull increases? Explain.
d. Assuming no friction, what is the acceleration of the box?
e. Assuming it begins at rest, what is its speed after ten seconds?
f. Is it possible for the kid to lift the box by pulling straight up on the rope?
g. In the absence of friction, what is the net force in the x−direction if the kid pulls at a 30◦◦ angle?
h. In the absence of friction, what is the net force in the x−direction if the kid pulls at a 45◦ angle?
i. In the absence of friction, what is the net force in the x−direction if the kid pulls at a60◦ angle?
j. The kid pulls the box at constant velocity at an angle of 30◦. What is the coefficient of kinetic friction

µK between the box and the floor?
k. The kid pulls the box at an angle of 30◦◦, producing an acceleration of 2 m/s2. What is the coefficient

of kinetic friction µK between the box and the floor?

34. For the following situation, identify the 3rd law force pairs on the associated free body diagrams. Label each
member of one pair “A,′′ each member of the next pair “B,′′ and so on. The spring is stretched so that it is
pulling the block of wood to the right.
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Draw free body diagrams for the situation below. Notice that we are pulling the bottom block out from beneath
the top block. There is friction between the blocks! After you have drawn your FBDs, identify the 3rd law
force pairs, as above.

35. Spinal implant problem — this is a real life bio-med engineering problem!

Here’s the situation: both springs are compressed by an amount xo. The rod of length L is fixed to both the
top plate and the bottom plate. The two springs, each with spring constant k, are wrapped around the rod
on both sides of the middle plate, but are free to move because they are not attached to the rod or the plates.
The middle plate has negligible mass, and is constrained in its motion by the compression forces of the top
and bottom springs. The medical implementation of this device is to screw the top plate to one vertebrae and
the middle plate to the vertebrae directly below. The bottom plate is suspended in space. Instead of fusing
broken vertebrates together, this implant allows movement somewhat analogous to the natural movement of
functioning vertebrae. Below you will do the exact calculations that an engineer did to get this device patented
and available for use at hospitals.

a. Find the force, F , on the middle plate for the region of its movement4x≤ xo. Give your answer in terms
of the constants given. ( Hint: In this region both springs are providing opposite compression forces.)

b. Find the force, F , on the middle plate for the region of its movement 4x ≥ xo. Give your answer in
terms of the constants given. ( Hint: In this region, only one spring is in contact with the middle plate.)

c. Graph F vs. x. Label the values for force for the transition region in terms of the constants given.

36. You design a mechanism for lifting boxes up an inclined plane by using a vertically hanging mass to pull them,
as shown in the figure below.
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The pulley at the top of the incline is massless and frictionless. The larger mass, M, is accelerating downward
with a measured acceleration a. The smaller masses are mA and mB ; the angle of the incline is θ, and the
coefficient of kinetic friction between each of the masses and the incline has been measured and determined
to be µK .

a. Draw free body diagrams for each of the three masses.
b. Calculate the magnitude of the frictional force on each of the smaller masses in terms of the given

quantities.
c. Calculate the net force on the hanging mass in terms of the given quantities.
d. Calculate the magnitudes of the two tension forces TA and TB in terms of the given quantities.
e. Design and state a strategy for solving for how long it will take the larger mass to hit the ground, assuming

at this moment it is at a height h above the ground. Do not attempt to solve this: simply state the strategy
for solving it.

37. You build a device for lifting objects, as shown below. A rope is attached to the ceiling and two masses are
allowed to hang from it. The end of the rope passes around a pulley (right) where you can pull it downward to
lift the two objects upward. The angles of the ropes, measured with respect to the vertical, are shown. Assume
the bodies are at rest initially.

a. Suppose you are able to measure the masses m1 and m2 of the two hanging objects as well as the tension
TC. Do you then have enough information to determine the other two tensions, TA and TB? Explain your
reasoning.

b. If you only knew the tensions TA and TC, would you have enough information to determine the masses
m1 and m2? If so, write m1 and m2 in terms of TA and TC. If not, what further information would you
require?

38. A stunt driver is approaching a cliff at very high speed. Sensors in his car have measured the acceleration and
velocity of the car, as well as all forces acting on it, for various times. The driver’s motion can be broken down
into the following steps: Step 1: The driver, beginning at rest, accelerates his car on a horizontal road for ten
seconds. Sensors show that there is a force in the direction of motion of 6000 N, but additional forces acting
in the opposite direction with magnitude 1000 N. The mass of the car is 1250 kg. Step 2: Approaching the
cliff, the driver takes his foot off of the gas pedal (There is no further force in the direction of motion.) and
brakes, increasing the force opposing motion from 1000 N to 2500 N. This continues for five seconds until he
reaches the cliff. Step 3: The driver flies off the cliff, which is 44.1 m high and begins projectile motion.
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(a) Ignoring air resistance, how long is the stunt driver in the air?
(b) For Step 1:

i. Draw a free body diagram, naming all the forces on the car.
ii. Calculate the magnitude of the net force.

iii. Find the change in velocity over the stated time period.
iv. Make a graph of velocity in the x−direction vs. time over the stated time period.
v. Calculate the distance the driver covered in the stated time period. Do this by finding the area under

the curve in your graph of (iv). Then, check your result by using the equations for kinematics.
(c) Repeat (b) for Step 2.
(d) Calculate the distance that the stunt driver should land from the bottom of the cliff.

39. You are pulling open a stuck drawer, but since you’re a physics geek you’re pulling it open with an electronic
device that measures force! You measure the following behavior. The drawer has a weight of 7 N.

Draw a graph of friction force vs. time.
40. Draw arrows representing the forces acting on the cannonball as it flies through the air. Assume that air

resistance is small compared to gravity, but not negligible.

41. A tug of war erupts between you and your sweetie. Assume your mass is 60 kg and the coefficient of friction
between your feet and the ground is 0.5 (good shoes). Your sweetie’s mass is 85 kg and the coefficient of
friction between his/her feet and the ground is 0.35 (socks). Who is going to win? Explain, making use of a
calculation.

42. A block has a little block hanging out to its side, as shown:
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As you know, if the situation is left like this, the little block will just fall. But if we accelerate the leftmost
block to the right, this will create a normal force between the little block and the big block, and if there is a
coefficient of friction between them, then the little block won’t slide down! Clever, eh?

a. The mass of the little block is 0.15 kg. What frictional force is required to keep it from falling? (State a
magnitude and direction.)

b. If both blocks are accelerating to the right with an acceleration a = 14.0 m/s2, what is the normal force
on the little block provided by the big block?

c. What is the minimum coefficient of static friction required?

Answers to Selected Problems

1. .
2. .
3. .
4. Zero; weight of the hammer minus the air resistance.
5. 2 forces
6. 1 force
7. No
8. The towel’s inertia resists the acceleration
9. a. Same distance b. You go farther c. Same amount of force

10. .
11. a. 98 N b. 98 N
12. .
13. 32 N
14. 5.7 m/s2

15. .
16. .
17. Fx = 14 N,Fy = 20 N
18. Left picture: F = 23N 98◦, right picture:F = 54 N 5◦

19. 3 m/s2 east
20. 4 m/s2;22.5◦ NE
21. 0.51
22. 0.2
23. The rope will not break because his weight of 784 N is distributed between the two ropes.
24. Yes, because his weight of 784 N is greater than what the rope can hold.
25. Mass is 51 kg and weight is 82 N
26. a. While accelerating down b. 686 N c. 826 N
27. a. 390 N b. 490 N
28. 0.33
29. 3.6 kg
30. gsinθ

31. b.20 N c. 4.9 N d. 1.63 kg e. Eraser would slip down the wall
32. a. 1450 N b. 5600 N c. 5700 N d. Friction between the tires and the ground e. Fuel, engine, or equal and

opposite reaction
33. b. 210 N c. no, the box is flat so the normal force doesn’t change d. 2.8 m/s2 e.28 m/s f. no g. 69 N h. 57 N

i. 40 N j. 0.33 k. 0.09
34. .
35. a. zero b. −kx0
36. b. f1 = µkm1gcosθ; f2 = µkm2gcosθ c. Ma d. TA = (m1 +m2)(a+µcosθ) and TB = m2a+µm2 cosθ e. Solve
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by using d = 1/2at2 and substituting h for d
37. a. Yes, because it is static and you know the angle and m1 b. Yes, TA and the angle gives you m1 and the angle

and TC gives you m2,m1 = TA cos25/g and m2 = TC cos30/g
38. a. 3 seconds d. 90 m
39. .
40. .
41. .
42. a. 1.5 N;2.1 N;0.71
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7.1 Forces so Far

In the absence of a net applied force, moving objects travel in a straight lines; this is Newton’s First Law. If their
velocity changes, even only in direction, there must be an applied force. When something experiences a net applied
force, there are several possibilities:

1. The force is constant in magnitude and direction and points along the line of motion, or the object is at rest.
In this case, the object will accelerate or decelerate in the direction of the force. The object’s position and
velocity can be found using the so called ’big three’ equations.

2. The force is constant in magnitude and direction and acting at some non-right angle to the direction of motion.
In this case, the object’s velocity vector can be broken down into perpendicular components in such a way that
on is parallel to the force. Then the problem is reduced to two one dimensional problems — along the force
and perpendicular to it — which can be solved according to case 1 above. An example of this is parabolic
motion under the influence of gravity.

3. The force is constant in magnitude, the object is in motion, and the force is always perpendicular to the
velocity vector. In this case, the object will move in a circle. This is a kind of ’opposite’ of case 1: then, the
object’s speed changed — whether increased or decreased — by the largest possible amount for a given force,
while now the object’s speed does not change at all.

4. The force is not constant

a. The force is due to a compressed or extended spring. We will cover this later.
b. All other cases: beyond the scope of this book.
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7.2 Centripetal Forces

Summary

Forces that cause objects to follow circular paths — case 3 above — are known as centripetal, or ’center seeking’,
forces. Such forces must continuously change direction to stay perpendicular to the velocity vector. We saw in the
chapters on vectors and kinematics that vectors cannot impact motion in directions perpendicular to them. This is
why the horizontal velocity of projectiles on earth does not change (as in two dimensional motion).

Speed vs. Direction

Think of a ball rolling horizontally off a cliff. At first, its velocity is perpendicular to the force of gravity. As it falls,
its velocity in the x direction stays constant, but it accelerates downward due to gravity. This ball will not travel in
circle, though, because gravity is only perpendicular to its velocity at the instant it leaves the cliff. Eventually, the
ball’s velocity components will be equal. After some time, if the cliff is tall enough, the ball’s vertical velocity will
dwarf its horizontal velocity.

Let’s now compare how gravity affects the ball’s speed at different 1 second intervals during its flight.

1. Let’s say this ball initially had a horizontal velocity — and therefore also speed — of 100 m/s, and a vertical
speed of 0. After the first second, its vertical velocity will about 10 m/s (assume g = 10m/s . Using the
pythagorean theorem, we find that the speed is now

√
1002 +102 ≈ 100.5m/s, a change of less than .5 m/s.

2. Now consider the ball after 10 seconds, when its velocity components are equal. Between the 10th and 11th

second, its speed goes from
√

1002 +1002 ≈ 141.4m/s to
√

1002 +(100+10)2 ≈ 148.7m/s, a much bigger
increase in the same time.

3. Finally, for the sake of argument, let’s say the cliff is mount Everest and the ball keeps falling for 100

seconds. Now, in one second, its speed goes from
√

1002 +(1000)2 ≈ 1005m/s to
√

1002 +(1000+10)2 ≈
1014.9m/s.
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In other words, it is much easier for a force to change the speed of an object when it points along its velocity vector.
Forces are capable of changing an object’s velocity — speed and direction: the more parallel to motion the force, the
more it changes speed; the more perpendicular, direction (if we had analyzed the effect on the angle of the velocity
vector above instead of speed, the results would have been reversed).

Circular Motion

Knowing this, we can understand why, when force is always perpendicular to the velocity vector, an object’s speed
never changes, while its direction changes continuously. If the force is constant and magnitude, the direction of the
object’s velocity must change at a constant rate — otherwise the situation would be asymmetrical. In other words,
the object will travel in a circle, with instantaneous velocity tangent to it and instantaneous force pointing toward the
center. At any given time, the relationship between force, acceleration, and velocity is illustrated here:

Circular motion is kind of a limiting case of the ’first second’ scenario above — if the force had always been
perpendicular to the ball’s velocity, it wouldn’t have accelerated downward for an entire second. No matter how
weak a centripetal force, it will in principle always cause a moving object to travel in a circle. This may seem
counterintuitive, but is actually a direct result of the arguments above.
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7.3 Characterizing The Force and Motion

If a mass m is traveling with velocity ~v and experiences a centripetal —always perpendicular — force ~Fc, it will
travel in a circle of radius

r =
mv2

|~F |
[1]

Alternatively, to keep this mass moving at this velocity in a circle of this radius, one needs to apply a centripetal
force of

~Fc =
mv2

r
[2]

By Newton’s Second Law, this is equivalent to a centripetal acceleration of:

~Fc =�m~ac =�m
v2

r
[3]
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7.4 Gravity as a Centripetal Force

When can Gravity Act as a Centripetal Force?

We saw last chapter that the force of Gravity causes an attraction between two objects of mass m1 and m2 at a
distance r of

~FG =
Gm1m2

r2 . [4]

By Newton’s Third Law, both objects experience the force: equal in magnitude and opposite in direction, and both
will move as an effect of it. If one of the objects is much lighter than the other (like the earth is to the sun, or a
satellite is to earth) we can approximate the situation by saying that the heavier mass (the sun) does not move, since
its acceleration will be far smaller due to its large mass. Then, if the lighter mass remains at a relatively constant
absolute distance from the heavier one (remember, centripetal force needs to be constant in magnitude), we can say
that the lighter mass experiences an effectively centripetal force.

Math of Centripetal Gravity

Gravity is not always a centripetal force. This is a really important point. It only acts as a centripetal force when
conditions approximate those listed above — very much like it isn’t constant near the surface of the earth, but very
close to it.

If gravity provides centripetal force and acceleration, we can set [2] equal to [4]. It’s important to remember that in
[2] m refers to the lighter mass, since that is the one traveling. Then,

G��m1m2

�
�7

r

r2
=�
�m1v2

�r

So, the relationship between velocity and radius for a circular orbit of a light object around an heavy mass (note the
mass of the lighter object cancels) is:

Gm2 = vorb
2rorb
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7.5 Key Concepts

• For something in orbit, an orbital period, T , is the time it takes to make one complete rotation.
• If a particle travels a full circle or orbit — a distance of 2πr — in an amount of time T , then its speed is

distance over time or 2πr
T .

• An object moving in a circle has an instantaneous velocity vector tangential to the circle of its path. The force
and acceleration vectors point to the center of the circle.

• Net force and acceleration always have the same direction.
• Centripetal acceleration is just the acceleration provided by centripetal forces.
• A geosynchronous orbit occurs when a satellite completes one orbit of the Earth every 24 hours. Since it

revolves at the same rate as the earth, it will stay above the same location.
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7.6 Key Applications

• To find the maximum speed that a car can take a corner on a flat road without skidding out, set the force of
friction equal to the centripetal force.

• To find the tension in the rope of a swinging pendulum, remember that it is the sum of the tension and gravity
that produces a net upward centripetal force. A common mistake is just setting the centripetal force equal to
the tension.

• To find the speed of a planet or satellite in an orbit, follow the example above.
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7.7 Examples

Example 1

Question: You buy new tires for your car in order to take turns a little faster (uh, not advised—always drive slowly).
The new tires double your coefficient of friction with the road. With the old tires you could take a particular turn at
a speed of vi. What is the maximum speed you can now take the turn without skidding out.

Solution: To find the maximum speed a car can take a corner on a flat road without skidding out, set the force
of friction equal to the centripetal force. This is because the centripetal force pushes the car off the road and the
frictional force keeps the car on the road. Therefore, if the centripetal force and the frictional force were equal, the
car would be going the maximum speed it could go on that turn without sliding off the road.

Fc =
mvi

2

r
= Fk

Then we solve for v.

mvi
2

r = Fk⇒ vi
2 = Fkr

m ⇒ vi =
√

Fkr
m

If we replace the frictional force with twice the frictional force we get the new speed.

v f =
√

2Fkr
m

The new speed is
√

2 greater than the original speed.
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7.8 Centripetal Forces Problem Set

1. When you make a right turn at constant speed in your car what is the force that causes you (not the car) to
change the direction of your velocity? Choose the best possible answer.

a. Friction between your butt and the seat
b. Inertia
c. Air resistance
d. Tension
e. All of the above
f. None of the above

2. You buy new tires for your car in order to take turns a little faster (uh, not advised — always drive slowly).
The new tires double your coefficient of friction with the road. With the old tires you could take a particular
turn at a speed vo. What is the maximum speed you can now take the turn without skidding out?

a. 4vo

b. 2vo

c. vo

d.
√

2vo

e. Not enough information given

3. A pendulum consisting of a rope with a ball attached at the end is swinging back and forth. As it swings
downward to the right the ball is released at its lowest point. Decide which way the ball attached at the end of
the string will go at the moment it is released.

a. Straight upwards
b. Straight downwards

87

http://www.ck12.org


7.8. Centripetal Forces Problem Set www.ck12.org

c. Directly right
d. Directly left
e. It will stop

4. A ball is spiraling outward in the tube shown to the above. Which way will the ball go after it leaves the tube?

a. Towards the top of the page
b. Towards the bottom of the page
c. Continue spiraling outward in the clockwise direction
d. Continue in a circle with the radius equal to that of the spiral as it leaves the tube
e. None of the above

5. An object of mass 10 kg is in a circular orbit of radius 10 m at a velocity of 10 m/s.

a. Calculate the centripetal force (in N) required to maintain this orbit.
b. What is the acceleration of this object?

6. Suppose you are spinning a child around in a circle by her arms. The radius of her orbit around you is 1 meter.
Her speed is 1 m/s. Her mass is 25 kg.

a. What is the tension in your arms?
b. In her arms?

7. A racecar is traveling at a speed of 80.0 m/s on a circular racetrack of radius 450 m.

a. What is its centripetal acceleration in m/s2?
b. What is the centripetal force on the racecar if its mass is 500 kg?
c. What provides the necessary centripetal force in this case?

8. The radius of the Earth is 6380 km. Calculate the velocity of a person standing at the equator due to the
Earth’s 24 hour rotation. Calculate the centripetal acceleration of this person and express it as a fraction of the
acceleration g due to gravity. Is there any danger of “flying off”?

9. Neutron stars are the corpses of stars left over after supernova explosions. They are the size of a small city,
but can spin several times per second. (Try to imagine this in your head.) Consider a neutron star of radius
10 km that spins with a period of 0.8 seconds. Imagine a person is standing at the equator of this neutron star.

a. Calculate the centripetal acceleration of this person and express it as a multiple of the acceleration g due
to gravity (on Earth).

b. Now, find the minimum acceleration due to gravity that the neutron star must have in order to keep the
person from flying off.
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10. Calculate the force of gravity between the Sun and the Earth. (The relevant data are included in Appendix B.)
11. Calculate the force of gravity between two human beings, assuming that each has a mass of 80 kg and that

they are standing 1 m apart. Is this a large force?
12. Prove g is approximately 10 m/s2 on Earth by following these steps:

a. Calculate the force of gravity between a falling object (for example an apple) and that of Earth. Use the
symbol mo to represent the mass of the falling object.

b. Now divide that force by the object’s mass to find the acceleration g of the object.

13. Our Milky Way galaxy is orbited by a few hundred “globular” clusters of stars, some of the most ancient
objects in the universe. Globular cluster M13 is orbiting at a distance of 26,000 light-years (one light-year is
9.46× 1015 m) and has an orbital period of 220 million years. The mass of the cluster is 106 times the mass
of the Sun.

a. What is the amount of centripetal force required to keep this cluster in orbit?
b. What is the source of this force?# Based on this information, what is the mass of our galaxy? If you

assume that the galaxy contains nothing, but Solar-mass stars (each with an approximate mass of 2×
1030 kg), how many stars are in our galaxy?

14. Calculate the centripetal acceleration of the Earth around the Sun.
15. You are speeding around a turn of radius 30.0 m at a constant speed of 15.0 m/s.

a. What is the minimum coefficient of friction µ between your car tires and the road necessary for you to
retain control?

b. Even if the road is terribly icy, you will still move in a circle because you are slamming into the walls.
What centripetal forces must the walls exert on you if you do not lose speed? Assume m = 650 kg.

16. Calculate the gravitational force that your pencil or pen pulls on you. Use the center of your chest as the center
of mass (and thus the mark for the distance measurement) and estimate all masses and distances.

a. If there were no other forces present, what would your acceleration be towards your pencil? Is this a
large or small acceleration?

b. Why, in fact, doesn’t your pencil accelerate towards you?

17. A digital TV satellite is placed in geosynchronous orbit around Earth, so it is always in the same spot in the
sky.

a. Using the fact that the satellite will have the same period of revolution as Earth, calculate the radius of
its orbit.

b. What is the ratio of the radius of this orbit to the radius of the Earth?
c. Draw a sketch, to scale, of the Earth and the orbit of this digital TV satellite.
d. If the mass of the satellite were to double, would the radius of the satellite’s orbit be larger, smaller, or

the same? Why?

18. A top secret spy satellite is designed to orbit the Earth twice each day (i.e., twice as fast as the Earth’s rotation).
What is the height of this orbit above the Earth’s surface?
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19. Two stars with masses 3.00×1031 kg and 7.00×1030 kg are orbiting each other under the influence of each
other’s gravity. We want to send a satellite in between them to study their behavior. However, the satellite
needs to be at a point where the gravitational forces from the two stars are equal. The distance between the
two stars is 2.0×1010 m. Find the distance from the more massive star to where the satellite should be placed.
( Hint: Distance from the satellite to one of the stars is the variable.)

20. Calculate the mass of the Earth using only: (i) Newton’s Universal Law of Gravity; (ii) the Moon-Earth
distance (Appendix B); and (iii) the fact that it takes the Moon 27 days to orbit the Earth.

21. A student comes up to you and says, “I can visualize the force of tension, the force of friction, and the other
forces, but I can’t visualize centripetal force.” As you know, a centripetal force must be provided by tension,
friction, or some other “familiar” force. Write a two or three sentence explanation, in your own words, to help
the confused student.

22. A space station was established far from the gravitational field of Earth. Extended stays in zero gravity are not
healthy for human beings. Thus, for the comfort of the astronauts, the station is rotated so that the astronauts
feel there is an internal gravity. The rotation speed is such that the apparent acceleration of gravity is 9.8 m/s2.
The direction of rotation is counter-clockwise.

a. If the radius of the station is 80 m, what is its rotational speed, v?
b. Draw vectors representing the astronaut’s velocity and acceleration.
c. Draw a free body diagram for the astronaut.
d. Is the astronaut exerting a force on the space station? If so, calculate its magnitude. Her mass m = 65 kg.
e. The astronaut drops a ball, which appears to accelerate to the ’floor,’ (see picture) at 9.8 m/s2.

a. Draw the velocity and acceleration vectors for the ball while it is in the air.
b. What force(s) are acting on the ball while it is in the air?
c. Draw the acceleration and velocity vectors after the ball hits the floor and comes to rest.
d. What force(s) act on the ball after it hits the ground?
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Answers to Selected Problems

1. .
2. .
3. .
4. .
5. a. 100 N b. 10 m/s2

6. a. 25 N towards her b. 25 N towards you
7. a. 14.2 m/s2 b. 7.1×103 N c. friction between the tires and the road
8. .0034g
9. a. 6.2×105 m/s2 b. The same as a.

10. 3.56×1022N
11. 4.2×10−7 N; very small force
12. g = 9.8 m/s2; you’ll get close to this number but not exactly due to some other small effects
13. a. 4×1026 N b. gravity c. 2×1041 kg
14. .006 m/s2

15. a. .765 b. 4880 N
16. a. ∼ 10−8 N very small force b. Your pencil does not accelerate toward you because the frictional force on

your pencil is much greater than this force.
17. a. 4.23×107m b. 6.6 Re d. The same, the radius is independent of mass
18. 1.9×107m
19. You get two answers for r, one is outside of the two stars one is between them, that’s the one you want,

1.32×1010m from the larger star.
20. .
21. .
22. a. v = 28 m/s b. v−down, a−right c. f−right d. Yes, 640N
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8.1 The Big Idea

The universe has many remarkable qualities, among them a rather beautiful symmetry: the total amount of motion
in the universe is constant. This law only makes sense if we measure “motion” in a specific way: as the product of
mass and velocity. This product, called momentum, can be transferred from one object to another in a collision. The
rapidity with which momentum is exchanged over time is determined by the forces involved in the collision. This is
the second of the five fundamental conservation laws in physics. The other four are conservation of energy, angular
momentum, charge and CPT. (See Feynman’s Diagrams for an explanation of CPT.)
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8.2 Key Equations and Definitions

We start with a definition of momentum. Since mass is a scalar and velocity is a vector, momentum — their product
— is a vector. The momentum of an object with mass m traveling at a velocity v is:

~p = m~v [1]

It points in the direction of an object’s velocity, and has a magnitude equal to the object’s mass times its speed. For
a system of many objects, the momentum of the system is equal to the sum of the individual momentum vectors:

~psys = ∑~pi [2]

Newton referred to momentum in his Second Law; in his terms, if an object of m experiences a net force Fnet in a
period ∆t, the following relationship holds:

~Fnet =
∆~p
∆t

= m
∆~v
∆t

= m~a [3]

In other words, an unbalanced force changes an object’s momentum, with a change equal to

∆~p = ~Fnet∆t [4]

Again, momentum is such an important quantity that Newton defined his Second Law in terms of it.

Finally, according to the law of conservation of momentum, the final momentum of a closed system — like its energy
— is equal to its initial value. Using [2], we can write:

∑ ~pinitial = ∑~p

final [5]

An important point is that since momentum is a vector, both its magnitude and direction are conserved. The (vector)
sum of the initial momentum vectors will be equal to the sum of the final vectors.

Much like forces cannot affect motion in direction perpendicular to them—think horizontal velocity of projectiles
in 2-D, perpendicular components of the momentum vector are independent. This means that [3] implies that any
mutually perpendicular components of momentum would have to be conserved as well, in particular:

∑ ~pyi = ∑ ~pyf [6]

∑ ~pxi = ∑ ~pxf [7]

This fact is useful in two dimensional problems, where you can set up equations for each component.

94

http://www.ck12.org


www.ck12.org Chapter 8. Momentum Conservation Version 2

8.3 Key Concepts

• The total momentum of the universe is always the same and is equal to zero. The total momentum of an
isolated system never changes.

• Momentum can be transferred from one body to another. In an isolated system in which momentum is
transferred internally, the total initial momentum is the same as the total final momentum.

• Momentum conservation is especially important in collisions, where the total momentum just before the
collision is the same as the total momentum after the collision.

• The force imparted on an object is equal to the change in momentum divided by the time interval over which
the objects are in contact.

• Internal forces are forces for which both Newton’s Third Law force pairs are contained within the system.
For example, consider a two-car head-on collision. Define the system as just the two cars. In this case, internal
forces include that of the fenders pushing on each other, the contact forces between the bolts, washers, and
nuts in the engines, etc.

• External forces are forces that act on the system from outside. In our previous example, external forces
include the force of gravity acting on both cars (because the other part of the force pair, the pull of gravity the
Earth experiences coming from the cars, is not included in the system) and the forces of friction between the
tires and the road.

• If there are no external forces acting on a system of objects, the initial momentum of the system will be the
same as the final momentum of the system. Otherwise, the final momentum will change by ∆~p = ~F∆t. We
call such a change in momentum ∆~p an impulse.
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8.4 Key Applications

• Two cars collide head-on—two subatomic particles collide in an accelerator—a bird slams horizontally into a
glass office building: all of these are examples of one-dimensional (straight line) collisions. For these, pay
extra attention to direction: define one direction as positive and the other as negative, and be consistent with
signs. Remember, in one dimension vectors are just numbers with signs.

• A firecracker in mid-air explodes—two children push off each other on roller skates—an atomic nucleus
breaks apart during a radioactive decay: all of these are examples of disintegration problems. The initial
momentum beforehand is zero, so the final momentum afterwards must also be zero. Momenta along any set
of perpendicular vectors (like (~x,~y,~z)) must also be 0.

• A spacecraft burns off momentum by colliding with air molecules as it descends—hail stones pummel the top
of your car—a wet rag is thrown at and sticks to the wall: all of these are examples of impulse problems,
where the change in momentum of one object and the reaction to the applied force are considered. What is
important here is the rate: you need to come up with an average time ∆t that the collision(s) last so that you
can figure out the force ~F =

~∆p
∆t , according to [4].

• Remember as well that if a particle has momentum ~p, and it experiences an impulse that turns it around
completely, with new momentum −~p, then the total change in momentum has magnitude 2p. It is harder to
reflect something than to stop it.

• Momentum vectors add just like any other vectors. Refer to the addition of vectors material in Chapter 1.
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8.5 Examples

Example 1

Question: Two blocks collide on a frictionless surface. Afterwards, they have a combined mass of 10kg and a speed
of 2.5m/s. Before the collision, block A, which has a mass of 8.0kg, was at rest. What was the mass and initial
speed of block B?

Solution: To find mass of block B we have a simple subtraction problem. We know that the combined mass is 10kg
and the mass of block A is 8.0kg.

10kg−8.0kg = 2.0kg

Now that we know the mass of both blocks we can find the speed of block B. We will use conservation of momentum.
This was a completely inelastic collision. We know this because the blocks stuck together after the collision. This
problem is one dimensional, because all motion happens along the same line. Thus we will use the equation

(mA +mB)v f = mA× vA +mB× vB

and solve for the velocity of block B.

(mA +mB)v f = mA× vA +mBvB⇒
(mA +mB)(v f )− (mA)(vA)

mB
= vB

Now we simply plug in what we know to solve for the velocity.

(2.0kg+8.0kg)(2.5m/s)− (8.0kg)(0m/s)
2.0kg

= 12.5m/s

Example 2

Question: Chris and Ashley are playing pool on a frictionless table. Ashley hits the cue ball into the 8 ball with a
velocity of 1.2m/s. The cue ball (c) and the 8 ball (e) react as shown in the diagram. The 8 ball and the cue ball
both have a mass of .17kg. What is the velocity of the cue ball? What is the direction (the angle) of the cue ball?

Answer: We know the equation for conservation of momentum, along with the masses of the objects in question as
well two of the three velocities. Therefore all we need to do is manipulate the conservation of momentum equation
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so that it is solved for the velocity of the cue ball after the collision and then plug in the known values to get the
velocity of the cue ball.

mcvic +mevie = mcv f c +mev f e

v f c =
mcvic +mevie−mev f e

mc
=

.17kg×2.0m/s+ .17kg×0m/s− .17kg×1.2m/s
.17kg

= .80m/s

Now we want to find the direction of the cue ball. To do this we will use the diagram below.

We know that the momentum in the y direction of the two balls is equal. Therefore we can say that the velocity in
the y direction is also equal because the masses of the two balls are equal.

mcvcy = mevey→ vcy = vey

Given this and the diagram, we can find the direction of the cue ball. After 1 second, the 8 ball will have traveled
1.2m. Therefore we can find the distance it has traveled in the y direction.

sin25o =
opposite

hypotenuse
=

x
1.2m

→ x = sin25×1.2m = .51m

Therefore, in one second the cue ball will have traveled .51m in the y direction as well. We also know how far in
total the cue ball travels in one second (.80m). Thus we can find the direction of the cue ball.

sin−1 opposite
hypotenuse

= sin−1 .51m
.80m

= 40o
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8.6 Momentum Conservation Problem Set

1. You find yourself in the middle of a frozen lake. There is no friction between your feet and the ice of the lake.
You need to get home for dinner. Which strategy will work best?

a. Press down harder with your shoes as you walk to shore.
b. Take off your jacket. Then, throw it in the direction opposite to the shore.
c. Wiggle your butt until you start to move in the direction of the shore.
d. Call for help from the great Greek god Poseidon.

2. You jump off of the top of your house and hope to land on a wooden deck below. Consider the following
possible outcomes:

a. You hit the deck, but it isn’t wood! A camouflaged trampoline slows you down over a time period of 0.2
seconds and sends you flying back up into the air.

b. You hit the deck with your knees locked in a straight-legged position. The collision time is 0.01 seconds.
c. You hit the deck and bend your legs, lengthening the collision time to 0.2 seconds.
d. You hit the deck, but it isn’t wood! It is simply a piece of paper painted to look like a deck. Below is an

infinite void and you continue to fall, forever.

a. Which method will involve the greatest force acting on you?
b. Which method will involve the least force acting on you?
c. Which method will land you on the deck in the least pain?
d. Which method involves the least impulse delivered to you?
e. Which method involves the greatest impulse delivered to you?

3. You and your sister are riding skateboards side by side at the same speed. You are holding one end of a rope
and she is holding the other. Assume there is no friction between the wheels and the ground. If your sister lets
go of the rope, how does your speed change?

a. It stays the same.
b. It doubles.
c. It reduces by half.
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4. You and your sister are riding skateboards (see Problem 3), but now she is riding behind you. You are holding
one end of a meter stick and she is holding the other. At an agreed time, you push back on the stick hard
enough to get her to stop. What happens to your speed? Choose one. (For the purposes of this problem
pretend you and your sister weigh the same amount.)

a. It stays the same.
b. It doubles.
c. It reduces by half.

5. You punch the wall with your fist. Clearly your fist has momentum before it hits the wall. It is equally clear
that after hitting the wall, your fist has no momentum. But momentum is always conserved! Explain.

6. An astronaut is using a drill to fix the gyroscopes on the Hubble telescope. Suddenly, she loses her footing
and floats away from the telescope. What should she do to save herself?

7. You look up one morning and see that a 30 kg chunk of asbestos from your ceiling is falling on you! Would
you be better off if the chunk hit you and stuck to your forehead, or if it hit you and bounced upward? Explain
your answer.

8. A 5.00 kg firecracker explodes into two parts: one part has a mass of 3.00 kg and moves at a velocity of
25.0 m/s towards the west. The other part has a mass of 2.00 kg. What is the velocity of the second piece as
a result of the explosion?

9. A firecracker lying on the ground explodes, breaking into two pieces. One piece has twice the mass of the
other. What is the ratio of their speeds?

10. You throw your 6.0 kg skateboard down the street, giving it a speed of 4.0 m/s. Your friend, the Frog, jumps
on your skateboard from rest as it passes by. Frog has a mass of 60 kg.

a. What is the momentum of the skateboard before Frog jumps on it?
b. Find Frog’s speed after he jumps on the skateboard.
c. What impulse did Frog deliver to the skateboard?
d. If the impulse was delivered over 0.2 seconds, what was the average force imparted to the skateboard?
e. What was the average force imparted to the Frog? Explain.

11. Two blocks collide on a frictionless surface, as shown. Afterwards, they have a combined mass of 10 kg and
a speed of 2.5 m/s. Before the collision, one of the blocks was at rest. This block had a mass of 8.0 kg. What
was the mass and initial speed of the second block?

12. While driving in your pickup truck down Highway 280 between San Francisco and Palo Alto, an asteroid
lands in your truck bed! Despite its 220 kg mass, the asteroid does not destroy your 1200 kg truck. In fact,
it landed perfectly vertically. Before the asteroid hit, you were going 25 m/s. After it hit, how fast were you
going?

13. A baseball player faces a 80.0 m/s pitch. In a matter of .020 seconds he swings the bat, hitting a 50.0 m/s
line drive back at the pitcher. Calculate the force on the bat while in contact with the ball.
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14. An astronaut is 100 m away from her spaceship doing repairs with a 10.0 kg wrench. The astronaut’s total
mass is 90.0 kg and the ship has a mass of 1.00×104 kg. If she throws the wrench in the opposite direction of
the spaceship at 10.0 m/s how long would it take for her to reach the ship?

15. A place kicker applies an average force of 2400 N to a football of .040 kg. The force is applied at an angle of
20.0 degrees from the horizontal. Contact time is .010 sec.

a. Find the velocity of the ball upon leaving the foot.
b. Assuming no air resistance find the time to reach the goal posts 40.0 m away.
c. The posts are 4.00 m high. Is the kick good? By how much?

16. In the above picture, the carts are moving on a level, frictionless track. After the collision all three carts stick
together. Determine the direction and speed of the combined carts after the collision. (Assume 3−significant
digit accuracy.)

17. Your author’s Italian cousin crashed into a tree. He was originally going 36 km/hr. Assume it took 0.40
seconds for the tree to bring him to a stop. The mass of the cousin and the car is 450 kg.

a. What average force did he experience? Include a direction in your answer.
b. What average force did the tree experience? Include a direction in your answer.
c. Express this force in pounds.
d. How many g’s of acceleration did he experience?

18. The train engine and its four boxcars are coasting at 40 m/s. The engine train has mass of 5,500 kg and the
boxcars have masses, from left to right, of 1,000 kg, 1,500 kg, 2,000 kg, and 3,000 kg. (For this problem,
you may neglect the small external forces of friction and air resistance.)
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a. What happens to the speed of the train when it releases the last boxcar? (Hint: Think before you blindly
calculate.)

b. If the train can shoot boxcars backwards at 30 m/s relative to the train’s speed, how many boxcars does
the train need to shoot out in order to obtain a speed of 58.75 m/s?

19. Serena Williams volleys a tennis ball hit to her at 30 m/s. She blasts it back to the other court at 50 m/s. A
standard tennis ball has mass of 0.057 kg. If Serena applied an average force of 500 N to the ball while it was
in contact with the racket, how long did the contact last?

20. Zoran’s spacecraft, with mass 12,000 kg, is traveling to space. The structure and capsule of the craft have a
mass of 2,000 kg; the rest is fuel. The rocket shoots out 0.10 kg/s of fuel particles with a velocity of 700 m/s
with respect to the craft.

a. What is the acceleration of the rocket in the first second?
b. What is the average acceleration of the rocket after the first ten minutes have passed?
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21. In Sacramento a 4000 kg SUV is traveling 30 m/s south on Truxel crashes into an empty school bus, 7000 kg
traveling east on San Juan. The collision is perfectly inelastic.

a. Find the velocity of the wreck just after collision
b. Find the direction in which the wreck initially moves

22. A 3 kg ball is moving 2 m/s in the positive x−direction when it is struck dead center by a 2 kg ball moving in
the positive y−direction. After collision the 3 kg ball moves at 1 m/s30 degrees from the positive x−axis.

(a) To 2−significant digit accuracy fill out the following table:

TABLE 8.1:

3 kg ball px 3 kg ball py 2 kg ball px 2 kg ball py

Momentum before
Momentum after
collision

23. (b) Find the velocity and direction of the 2 kg ball.
(c) Use the table to prove momentum is conserved.
(d) Prove that kinetic energy is not conserved.

24. Students are doing an experiment on the lab table. A steel ball is rolled down a small ramp and allowed to hit
the floor. Its impact point is carefully marked. Next a second ball of the same mass is put upon a set screw
and a collision takes place such that both balls go off at an angle and hit the floor. All measurements are taken
with a meter stick on the floor with a co-ordinate system such that just below the impact point is the origin.
The following data is collected:

(a) no collision: 41.2 cm
(b) target ball: 37.3 cm in the direction of motion and 14.1 cm perpendicular to the direction of motion
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i. From this data predict the impact position of the other ball.
ii. One of the lab groups declares that the data on the floor alone demonstrate to a 2% accuracy that the

collision was elastic. Show their reasoning.
iii. Another lab group says they can’t make that determination without knowing the velocity the balls

have on impact. They ask for a timer. The instructor says you don’t need one; use your meter stick.
Explain.

iv. Design an experiment to prove momentum conservation with balls of different masses, giving
apparatus, procedure and design. Give some sample numbers.

Answers to Selected Problems

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. 37.5 m/s
9. v1 = 2v2

10. a. 24 kg−m
5 b. 0.364 m/s c. 22 kg−m

5 d. 109 N e. 109 N due to Newton’s third law
11. 2.0 kg,125 m/s
12. 21 m/s to the left
13. 3250 N
14. a. 90 sec b. 1.7×105 sec
15. a. 60 m/s b. .700 sec c. yes, 8.16 m
16. 0.13 m/s to the left
17. a. 11000 N to the left b. tree experienced same average force of 11000 N but to the right c. 2500 lb. d. about

2.5 “g”s of acceleration
18. a. no change b. the last two cars
19. a. 0.00912 s
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20. a. 0.0058 m/s2 b. 3.5 m/s2

21. a.15 m/s b. 49◦ S of E
22. b. 4.6 m/s 68◦
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9.1 The Big Idea

The law of conservation of momentum states that in any closed system (including the universe) the total quantity of
momentum is constant. Momentum can be transferred from one body to another, but none is lost or gained. If a
system has its momentum changed from the outside it is caused by an impulse, which transfers momentum from one
body to another.

When any two bodies in the universe interact, they can exchange energy, momentum, or both. We saw in an earlier
chapter that the law of conservation of energy states that in any closed system (including the universe) the total
quantity of energy remains fixed. Energy is transferred from one form to another, but not lost or gained. If energy is
put into a system from the outside or vice versa it is often in the form of work, which is a transfer of energy between
bodies.

At this point, we have an opportunity to explore the relationship between force, energy and work. These are really
important concepts in physics, so we should take our time to understand them. At this point the situation can be
summarized like this: energy is the capacity to create motion or change, force is what creates the change, and work
is a book keeping tool to keep track of forces.
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9.2 Math of Force, Energy, and Work

When an object moves in the direction of an applied force, we say that the force does work on the object. Note that
the force may be slowing the object down, speeding it up, maintaining its velocity — any number of things. In all
cases, the net work done is given by this formula:

W = ~F · ~d = ~F ·∆~x [1] Work is the dot product of force and displacement.

In other words, if an object has traveled a distance d under force ~F , the work done on it will equal to d multiplied by
the component of ~F along the object’s path. Consider the following example of a block moving horizontally with a
force applied at some angle:

Here the net work done on the object by the force will be Fd cosθ.
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9.3 Work-Energy Principle

The reason the concept of work is so useful is because of a theorem, called the work-energy principle, which states
that the change in an object’s kinetic energy is equal to the net work done on it:

∆Ke =Wnet [2]

Although we cannot derive this principle in general, we can do it for the case that interests us most: constant
acceleration. In the following derivation, we assume that the force is along motion. This doesn’t reduce the generality
of the result, but makes the derivation more tractable because we don’t need to worry about vectors or angles.

Recall that an object’s kinetic energy is given by the formula:

Ke =
1
2 mv2 [3]

Consider an object of mass m accelerated from a velocity vi to v f under a constant force. The change in kinetic
energy, according to [2], is equal to:

∆Ke = Kei−Ke f =
1
2 mv2

f − 1
2 mv2

i =
1
2 m(v2

f − v2
i ) [4]

Now let’s see how much work this took. To find this, we need to find the distance such an object will travel under
these conditions. We can do this by using the third of our ’Big three’ equations, namely:

v f
2 = vi

2 +2a∆x [5]

alternatively,

∆x =
v f

2− vi
2

2a
[6]

Plugging in [6] and Newton’s Third Law, F = ma, into [2], we find:

W = F∆x = ma×
v f

2− vi
2

2a
= 1

2 m(v2
f − v2

i ) [7],

which was our result in [4].

Using the Work-Energy Principle

The Work-Energy Principle can be used to derive a variety of useful results. Consider, for instance, an object dropped
a height ∆h under the influence of gravity. This object will experience constant acceleration. Therefore, we can again
use equation [6], substituting gravity for acceleration and ∆h for distance:

∆h =
v f

2− vi
2

2g

multiplying both sides by $mg$, we find:

mg∆h = m�g
v f

2− vi
2

2�g
= ∆Ke [8]

In other words, the work performed on the object by gravity in this case is mg∆h. We refer to this quantity as
gravitational potential energy; here, we have derived it as a function of height. For most forces (exceptions are
friction, air resistance, and other forces that convert energy into heat), potential energy can be understood as the
ability to perform work.
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Spring Force

A spring with spring constant k a distance ∆x from equilibrium experiences a restorative force equal to:

Fs =−k∆x [9]

This is a force that can change an object’s kinetic energy, and therefore do work. So, it has a potential energy
associated with it as well. This quantity is given by:

Esp =
1
2 k∆x2 [10] Spring Potential Energy

The derivation of [10] is left to the reader. Hint: find the average force an object experiences while moving from
x = 0 to x = ∆x while attached to a spring. The net work is then this force times the displacement. Since this quantity
(work) must equal to the change in the object’s kinetic energy, it is also equal to the potential energy of the spring.
This derivation is very similar to the derivation of the kinematics equations — look those up.
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9.4 Summary of Key Equations and Definitions

Here is a summary of important concepts from this and the past few chapters. The point of this chapter is to combine
all of our knowledge so far to solve new kinds of problems.

Transfers


W = F ·d Work is the dot product of force and displacement
P = ∆E

∆t Power is the rate of change of energy of a system, in Watts (J/s)
J = p = F∆t Impulse is the change in a system′s momentum

Conservation Laws


∑pinitial = ∑pfinal Total momentum is constant in closed systems

∑Einitial = ∑E f inal Total energy is constant in closed systems

∑Kinitial = ∑K f inal Kinetic energy conserved only in elastic collisions

One important type of problem is called a collision problem. In cases where collisions are elastic, kinetic energy
and momentum are conserved. In inelastic collisions, only momentum is conserved.
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9.5 Key Concepts

• An impulse occurs when momentum is transferred from one system to another. You can always determine the
impulse by finding the changes in momentum, which are done by forces acting over a period of time. If you
graph force vs. time of impact, the area under the curve is the impulse.

• Work is simply how much energy was transferred from one system to another system. You can always find
the work done on an object (or done by an object) by determining how much energy has been transferred into
or out of the object through forces. If you graph force vs. distance, the area under the curve is work. (The
semantics take some getting used to: if you do work on me, then you have lost energy, and I have gained
energy.)
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9.6 Key Applications

• When working a problem that asks for height or speed, energy conservation is almost always the easiest
approach.

• Potential energy of gravity, Ug, is always measured with respect to some arbitrary ’zero’ height defined to be
where the gravitational potential energy is zero. You can set this height equal to zero at any altitude you like.
Be consistent with your choice throughout the problem. Often it is easiest to set it to zero at the lowest point
in the problem.

• Some problems require you to use both energy conservation and momentum conservation. Remember, in
every collision, momentum is conserved. Kinetic energy, on the other hand, is not always conserved, since
some kinetic energy may be lost to heat.

• If a system involves no energy losses due to heat or sound, no change in potential energy and no work is done
by anybody to anybody else, then kinetic energy is conserved. Collisions where this occurs are called elastic.
In elastic collisions, both kinetic energy and momentum are conserved. In inelastic collisions kinetic energy
is not conserved; only momentum is conserved.

• Sometimes energy is “lost” when crushing an object. For instance, if you throw silly putty against a wall,
much of the energy goes into flattening the silly putty (changing intermolecular bonds). Treat this as lost
energy, similar to sound, chemical changes, or heat. In an inelastic collision, things stick, energy is lost, and
so kinetic energy is not conserved.

• When calculating work, use the component of the force that is in the same direction as the motion. Components
of force perpendicular to the direction of the motion don’t do work. (Note that centripetal forces never do work,
since they are always perpendicular to the direction of motion.)

• When calculating impulse the time to use is when the force is in contact with the body.
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9.7 Work and Energy Examples

Example 1

Question: A pile driver lifts a 500 kg mass a vertical distance of 20 m in 1.1 sec. It uses 225 kW of supplied power
to do this.

a) How much work was done by the pile driver?

b) How much power was used in actually lifting the mass?

c) What is the efficiency of the machine? (This is the ratio of power used to power supplied.)

d) The mass is dropped on a pile and falls 20 m. If it loses 40,000 J on the way down to the ground due to air
resistance, what is its speed when it hits the pile?

Answer:

a) We will use the equation for work and plug in the known values to get the amount of work done by the pile driver.

W = Fd = mad = 500kg×9.8m/s2×20m = 9.8×104J

b) We will use the power equation and plug in the known values to the power used.

P =
W
δt

=
9.8×104J

1.1s
= 89000W× 1kW

1000W
= 89kW

c) This is simply a division problem.

power used
power supplied

=
89kW

225kW
= .40

d) We have already solved for the amount of energy the mass has after the pile driver performs work on it (it has
9.8×104J). If on the way down it loses 40000J due to air resistance, then it effectively has

98000J−40000J = 58000J

of energy. So we will set the kinetic energy equation equal to the total energy and solve for v. This will give us the
velocity of the mass when it hits the ground because right before the mass hits the ground, all of the potential energy
will have been converted into kinetic energy.

58000J =
1
2

mv2⇒ v =

√
58000J×2

m
=

√
58000J×2

500kg
= 15.2m/s
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9.8 Energy and Force Problem Set

1. At 8:00 AM, a bomb exploded in mid-air. Which of the following is true of the pieces of the bomb after
explosion? (Select all that apply.)

a. The vector sum of the momenta of all the pieces is zero.
b. The total kinetic energy of all the pieces is zero.
c. The chemical potential energy of the bomb has been converted entirely to the kinetic energy of the pieces.
d. Energy is lost from the system to sound, heat, and a pressure wave.

2. A rock with mass m is dropped from a cliff of height h. What is its speed when it gets to the bottom of the
cliff?

a.
√

mg
b. 2gh
c.
√

2gh
d. gh
e. None of the above

3. Two cats, Felix and Meekwad, collide. Felix has a mass of 2 kg and an initial velocity of 10 m/s to the west.
Meekwad has a mass of 1 kg and is initially at rest. After the collision, Felix has a velocity of 4 m/s to the west
and Meekwad has a velocity of 12 m/s to the west. Verify that momentum was conserved. Then, determine
the kinetic energies of the system before and after the collision. What happened?! (All numbers are exact.)

4. You are at rest on your bicycle at the top of a hill that is 20 m tall. You start rolling down the hill. At the
bottom of the hill you have a speed of 22 m/s. Your mass is 80 kg. Assuming no energy is gained by or lost
to any other source, which of the following must be true?

a. The wind must be doing work on you.
b. You must be doing work on the wind.
c. No work has been done on either you or the wind.
d. Not enough information to choose from the first three.

5. A snowboarder, starting at rest at the top of a mountain, flies down the slope, goes off a jump and crashes
through a second-story window at the ski lodge. Retell this story, but describe it using the language of energy.
Be sure to describe both how and when the skier gained and lost energy during her journey.

6. An airplane with mass 200,000 kg is traveling with a speed of 268 m/s.

(a) What is the kinetic energy of the plane at this speed?

A wind picks up, which causes the plane to lose 1.20×108 J per second.

(b) How fast is the plane going after 25.0 seconds?

7. A roller coaster begins at rest 120 m above the ground, as shown. Assume no friction from the wheels and air,
and that no energy is lost to heat, sound, and so on. The radius of the loop is 40 m.
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a. Find the speed of the roller coaster at points B,C,D,E,F , and H.
b. Assume that 25% of the initial potential energy of the coaster is lost due to heat, sound, and air resistance

along its route. How far short of point H will the coaster stop?
c. Does the coaster actually make it through the loop without falling? (Hint: You might review the material

from Chapter 6 to answer this part.)

8. In the picture above, a 9.0 kg baby on a skateboard is about to be launched horizontally. The spring constant
is 300 N/m and the spring is compressed 0.4 m. For the following questions, ignore the small energy loss due
to the friction in the wheels of the skateboard and the rotational energy used up to make the wheels spin.

a. What is the speed of the baby after the spring has reached its uncompressed length?
b. After being launched, the baby encounters a hill 7 m high. Will the baby make it to the top? If so, what

is his speed at the top? If not, how high does he make it?
c. Are you finally convinced that your authors have lost their minds? Look at that picture!

9. When the biker is at the top of the ramp shown above, he has a speed of 10 m/s and is at a height of 25 m.
The bike and person have a total mass of 100 kg. He speeds into the contraption at the end of the ramp, which
slows him to a stop.

a. What is his initial total energy? (Hint: Set Ug = 0 at the very bottom of the ramp.)
b. What is the length of the spring when it is maximally compressed by the biker? (Hint: The spring does

not compress all the way to the ground so there is still some gravitational potential energy. It will help
to draw some triangles.)

10. An elevator in an old apartment building in Switzerland has four huge springs at the bottom of the shaft to
cushion its fall in case the cable breaks. The springs have an uncompressed height of about 1 meter. Estimate
the spring constant necessary to stop this elevator, following these steps:

a. First, guesstimate the mass of the elevator with a few passengers inside.
b. Now, estimate the height of a five-story building.
c. Lastly, use conservation of energy to estimate the spring constant.
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11. You are driving your buddy to class in a car of mass 900 kg at a speed of 50 m/s. You and your passenger
each have 80 kg of mass. Suddenly, a deer runs out in front of your car. The coefficient of friction between the
tires and the freeway cement is µk = 0.9. In addition there is an average force of friction of 6,000 N exerted
by air resistance, friction of the wheels and axles, etc. in the time it takes the car to stop.

a. What is your stopping distance if you skid to a stop?
b. What is your stopping distance if you roll to a stop (i.e., if the brakes don’t lock)?

12. You are skiing down a hill. You start at rest at a height 120 m above the bottom. The slope has a 10.0◦ grade.
Assume the total mass of skier and equipment is 75.0 kg.

a. Ignore all energy losses due to friction. What is your speed at the bottom?
b. If, however, you just make it to the bottom with zero speed what would be the average force of friction,

including air resistance?

13. Two horrific contraptions on frictionless wheels are compressing a spring (k = 400 N/m) by 0.5 m compared
to its uncompressed (equilibrium) length. Each of the 500 kg vehicles is stationary and they are connected by
a string. The string is cut! Find the speeds of the masses once they lose contact with the spring.

14. You slide down a hill on top of a big ice block as shown in the diagram. Your speed at the top of the hill is
zero. The coefficient of kinetic friction on the slide down the hill is zero (µk = 0). The coefficient of kinetic
friction on the level part just beneath the hill is 0.1(µk = 0.1).

a. What is your speed just as you reach the bottom of the hill?
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b. How far will you slide before you come to a stop?

15. A 70 kg woman falls from a height of 2.0 m and lands on a springy mattress.

a. If the springs compress by 0.5 m, what is the spring constant of the mattress?
b. f no energy is lost from the system, what height will she bounce back up to?

16. Marciel is at rest on his skateboard (total mass 50 kg) until he catches a ball traveling with a speed of 50 m/s.
The baseball has a mass of 2 kg. What percent of the original kinetic energy is transferred into heat, sound,
deformation of the baseball, and other non-mechanical forms when the collision occurs?

17. You throw a 0.5 kg lump of clay with a speed of 5 m/s at a 15 kg bowling ball hanging from a vertical rope.
The bowling ball swings up to a height of 0.01 m compared to its initial height. Was this an elastic collision?
Justify your answer.

118

http://www.ck12.org


www.ck12.org Chapter 9. Energy and Force Version 2

18. The 20 g bullet shown below is traveling to the right with a speed of 20 m/s. A 1.0 kg block is hanging from
the ceiling from a rope 2.0 m in length.

a. What is the maximum height that the bullet-block system will reach, if the bullet embeds itself in the
block?

b. What is the maximum angle the rope makes with the vertical after the collision?

19. You are playing pool and you hit the cue ball with a speed of 2 m/s at the 8−ball (which is stationary). Assume
an elastic collision and that both balls are the same mass. Find the speed and direction of both balls after the
collision, assuming neither flies off at any angle.

20. A 0.045 kg golf ball with a speed of 42.0 m/s collides elastically head-on with a 0.17 kg pool ball at rest. Find
the speed and direction of both balls after the collision.

21. Ball A is traveling along a flat table with a speed of 5.0 m/s, as shown below. Ball B, which has the same
mass, is initially at rest, but is knocked off the 1.5m high table in an elastic collision with Ball A. Find the
horizontal distance that Ball B travels before hitting the floor.
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22. Manrico (80.0 kg) and Leonora (60.0 kg) are figure skaters. They are moving toward each other. Manrico’s
speed is 2.00 m/s; Leonora’s speed is 4.00 m/s. When they meet, Leonora flies into Manrico’s arms.

a. With what speed does the entwined couple move?
b. In which direction are they moving?
c. How much kinetic energy is lost in the collision?

23. Aida slides down a 20.0 m high hill on a frictionless sled (combined mass 40.0 kg). At the bottom of the hill,
she collides with Radames on his sled (combined mass 50.0 kg). The two children cling together and move
along a horizontal plane that has a coefficient of kinetic friction of 0.10.

a. What was Aida’s speed before the collision?
b. What was the combined speed immediately after collision?
c. How far along the level plane do they move before stopping?

24. A pile driver lifts a 500 kg mass a vertical distance of 20 m in 1.1 sec. It uses 225 kW of supplied power to do
this.

a. How much power was used in actually lifting the mass?
b. What is the efficiency of the machine? (This is the ratio of power used to power supplied.)
c. The mass is dropped on a pile and falls 20 m. If it loses 40,000 J on the way down to the ground due to

air resistance, what is its speed when it hits the pile?

25. Investigating a traffic collision, you determine that a fast-moving car (mass 600 kg) hit and stuck to a second
car (mass 800 kg), which was initially at rest. The two cars slid a distance of 30.0 m over rough pavement
with a coefficient of friction of 0.60 before coming to a halt. What was the speed of the first car? Was the
driver above the posted 60 MPH speed limit?

26. Force is applied in the direction of motion to a 15.0 kg cart on a frictionless surface. The motion is along a
straight line and when t = 0, then x = 0 and v = 0. (The displacement and velocity of the cart are initially
zero.) Look at the following graph:

a. What is the change in momentum during the first 5 sec?
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b. What is the change in velocity during the first 10 sec?
c. What is the acceleration at 4 sec?
d. What is the total work done on the cart by the force from 0−10 sec?
e. What is the displacement after 5 sec?

27. Force is applied in the direction of motion to a 4.00 kg cart on a frictionless surface. The motion is along a
straight line and when t = 0,v = 0 and x = 0. look at the following graph:

a. What is the acceleration of the cart when the displacement is 4 m?
b. What work was done on the cart between x = 3 m and x = 8 m?
c. What is the total work done on the cart between 0−10 m?
d. What is the speed of the cart at x = 10 m?
e. What is the impulse given the cart by the force from 1−10 m?
f. What is the speed at x = 8 m?
g. How much time elapsed from when the cart was at x = 8 to when it got to x = 10 m?

28. You are to design an experiment to measure the average force an archer exerts on the bow as she pulls it back
prior to releasing the arrow. The mass of the arrow is known. The only lab equipment you can use is a meter
stick.

a. Give the procedure of the experiment and include a diagram with the quantities to be measured shown.
b. Give sample calculations using realistic numbers.
c. What is the single most important inherent error in the experiment?
d. Explain if this error would tend to make the force that it measured greater or lesser than the actual force

and why.

29. Molly eats a 500 kcal(2.09×106 J) power bar before the big pole vault. The bar’s energy content comes from
changing chemical bonds from a high to a low state and expelling gases. However, 25.0% of the bar’s energy
is lost expelling gases and 60.0% is needed by the body for various biological functions.
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a. How much energy is available to Molly for the run?
b. Energy losses due to air resistance and friction on the run are 200,000 J, Molly’s increased heart rate

and blood pressure use 55,000 J of the available energy during the run. What top speed can the 50.0 kg
Molly expect to attain?

c. The kinetic energy is transferred to the pole, which is “compressed” like a spring of k = 2720 N/m; air
resistance energy loss on the way up is 300 J, and as she crosses the bar she has a horizontal speed of
2.00 m/s. If Molly rises to a height equal to the expansion of the pole what is that height she reaches?

d. On the way down she encounters another 300 J of air resistance. How much heat in the end is given up
when she hits the dirt and comes to a stop?

30. A new fun foam target on wheels for archery students has been invented. The arrow of mass, m, and speed,
v0, goes through the target and emerges at the other end with reduced speed, v0/2. The mass of the target is
7 m. Ignore friction and air resistance.

a. What is the final speed of the target?
b. What is the kinetic energy of the arrow after it leaves the target?
c. What is the final kinetic energy of the target?
d. What percent of the initial energy of the arrow was lost in the shooting?

Answers to Selected Problems

1. .
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2. .
3. .
4. .
5. .
6. a. 7.18×109 J b. 204 m/s
7. a. 34 m/s @ B;28 m/s @ D;40 m/s @ E;49 m/s @ C and F; 0 m/s @ H b. 30 m c. Yes, it makes the loop
8. a. 2.3 m/s c. No, the baby will not clear the hill.
9. a. 29,500 J b. Spring has compressed length of 13 m

10. .
11. a. 86 m b. 220 m
12. a. 48.5 m/s b. 128 N
13. 0.32 m/s each
14. a. 10 m/s b. 52 m
15. a. 1.1×104 N/m b. 2 m above the spring
16. 96%
17. .
18. a. .008 m b. 5.12◦

19. 8 m/s same direction as the cue ball and 0 m/s
20. vgol f =−24.5 m/s;vpool = 17.6 m/s
21. 2.8 m
22. a. 0.57 m/s b. Leonora’s c. 617 J
23. a. 19.8 m/s b. 8.8 m/s c. 39.5 m
24. a. 89 kW b. 0.4 c. 15.1 m/s
25. 43.8 m/s
26. .
27. .
28. .
29. a. 3.15×105 J b. 18.0 m/s c. 2.41 m d. 7900 J
30. a. v0/14 b. mv0

2/8 c. 7mv0
2/392 d. 71%
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10.1 The Big Idea

In the chapter on centripetal forces, we learned that in some situations, objects move in circles. The purpose of this
chapter is to describe and formalize such motion. The fundamental physics behind it is based on the conservation
of angular momentum. This vector quantity is the product of rotational velocity and rotational inertia. In any closed
system (including the universe) the quantity of angular momentum is fixed. Angular momentum can be transferred
from one body to another, but cannot be lost or gained. If a system has its angular momentum changed from the
outside it is caused by a torque. Torque is a force applied at a distance from the center of rotation.

Rotational motion has many analogies to linear motion. By studying it in this framework, we can make use of many
of our previous results. In fact, most of rotational motion can be understood by looking at the following figure and
applying results from previous chapters.
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10.2 Formalizing Rotational Motion

FIGURE 10.1
Illustration of Rotational Motion

Key Concepts

• To determine the rotation axis, wrap your right hand’s fingers in the direction of rotation and your thumb will
point along the axis (see figure).

• When something rotates in a circle, it moves through a position angle θ that runs from 0 to 2π radians and
starts over again at 0. The physical distance it moves is called the path length. If the radius of the circle
is larger, the path length traveled is longer. According to the arc length formula s = rθ, the path length ∆s
traveled by something at radius r through an angle θ is:

∆s = r∆θ [1]

• Just like the linear velocity is the rate of change of distance, angular velocity, usually called ω, is the rate of
change of θ. The direction of angular velocity is either clockwise or counterclockwise. Analogously, the rate
of change of ω is the angular acceleration α.

• The linear velocity and linear acceleration of rotating object also depend on the radius of rotation, which is
called the moment arm (See figure) If something is rotating at a constant angular velocity, it moves more
quickly if it is farther from the center of rotation. For instance, people at the Earth’s equator are moving faster
than people at northern latitudes, even though their day is still 24 hours long – this is because they have a
greater circumference to travel in the same amount of time. According to [1],

ω =
∆θ

∆t
=

∆s
rt

=
v
r

or v = ωr [2]

• Alternatively, we could derive [2] by setting the time to travel a path length equal to the circumference, 2πr at
speed v equal to the time it takes to travel one full angular revolution, 2π at angular velocity ω.

• In exactly the same fashion we can derive the fact that angular acceleration α is related to linear acceleration
a in the following way:

a = αr [3]

Note: The above two relations hold for the situations where it is a single object (like the Earth, merry go round, etc.)
or if a rolling object is not slipping with respect to the ground or if a pulley is not slipping with respect to the rope.
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• The angular acceleration is not the same as centripetal acceleration, which always points toward the cen-
ter. Angular acceleration is always in the direction or against the direction of angular velocity. The linear
acceleration associated with it points along instantaneous velocity.

• Since the mathematics is identical, under constant angular acceleration we can have the big three equations
for circular motion.

• Just as linear accelerations are caused by forces, angular accelerations are caused by torques.
• Torques produce angular accelerations, but just as masses resist acceleration (due to inertia), there is an

inertia that opposes angular acceleration. The measure of this inertial resistance depends on the mass, but
more importantly on the distribution of the mass in a given object. The moment of inertia, I, is the rotational
version of mass. Values for the moment of inertia of common objects are given in problem 2. Torques have
only two directions: those that produce clockwise (CW) and those that produce counterclockwise (CCW)
rotations. The angular acceleration or change in would be in the direction of the torque.

• Imagine spinning a fairly heavy disk. To make it spin, you don’t push towards the disk center– that will
just move it in a straight line. To spin it, you need to push along the side, much like when you spin a
basketball. Thus, the torque you exert on a disk to make it accelerate depends only on the component of the
force perpendicular to the radius of rotation:

• Many separate torques can be applied to an object. The angular acceleration produced is αnet =
τnet

I
• When an object is rolling without slipping this means that v = rω and a = rα. This is also true in the situation

of a rope on a pulley that is rotating the pulley without slipping. Using this correspondence between linear
and angular speed and acceleration is very useful for solving problems, but is only true if there is no slipping.

• The angular momentum of a spinning object is L = Iω. Torques produce a change in angular momentum with
time: τ = ∆L

∆t
• Spinning objects have a kinetic energy, given by Krot =

1
2 Iω2.
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10.3 Analogies Between Linear and Rotational
Motion

Linear



Quantity Units
~x m
~v m/s
m kg
~F =

~∆p
∆t N

~a =
~FNet
m m/s2

~p = m~v kg m/s
K = 1

2 mv2 J

Rotational



Quantity Units
~θ Radians
ω Radians/s
~I kg m2

τ =
~∆L
∆t N m

α = τNet
~I

Radians/s2

~L =~Iω kg m2/s
K = 1

2 Iω2 J

In addition to [1], [2], and [3], there are other important relationships for rotational motion. These are summarized
in table 1.1.

TABLE 10.1:

Equation Explanation
ac =v2/r =rω2 the centripetal acceleration of an object.
ω = 2π/T = 2π f Relationship between period and frequency.
θ(t) = θ0 +ω0t +1/2αt2 The ’Big Three’ equations work for rotational motion

too!
ω(t) = ω0 +αt Rotational equivalent of v f = vi +at
ω2 =ω2

0+2α(∆θ) Rotational equivalent of v2
f = v2

i +2ad
α = τnet/I Angular accelerations are produced by net torques,with

inertia opposing acceleration; this is the rotational ana-
log of a = Fnet/m

τnet = Στi = Iα The net torque is the vector sum of all the torques acting
on the object. When adding torques it is necessary to
subtract CW from CCW torques.

~τ =~r×~F = r⊥F = rF⊥ Individual torques are determined by multiplying the
force applied by the perpendicular component of the
moment arm

L = Iω Angular momentum is the product of moment of inertia
and angular velocity.

τ =4L/4t Torques produce changes in angular momentum; this is
the rotational analog of F =4p/4t

K = 1/2Iω2 Rotational motion contributes to kinetic energy as well!
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10.4 Example 1

Question: A game of tug-of-war is played. . . but with a twist (ha!). Each team has its own rope attached to a merry-
go-round. One team pulls counterclockwise with a force of 200N. The other team pulls clockwise with a force of
400N. But there is another twist. The counterclockwise team’s rope is attached 2.6m from the center of the merry
go round and the clockwise team’s rope is attached 1.2m from the center of the circle.

a) Who wins?

b) By how much? That is, what is the net torque?

c) Assume that the merry-go-round is weighted down with a large pile of steel plates. It is so massive that it has a
moment of inertia of 2000kg×m2. What is the angular acceleration?

d) How long will it take the merry-go-round to complete one revolution?

Solution:

a) To find out who wins, we need to find which team is pulling with the greater torque. Therefore, we will use the
equation

τ = rF

counterclockwise team:

τ = rF = 2.6m×200N = 520N×m

clockwise team:

τ = rF = 1.2m×400N = 480N×m

So the counterclockwise team wins.

b) To figure out the net torque we simply subtract the two torques.

520N×m−480N×m = 40N×m

So we have a 40N×m counterclockwise net torque.

c) To find the angular acceleration we use the equation

α =
τ

l

Since we know both the net torque and the moment of inertia, all we have to do is plug these values in.

α =
τ

l
=

40N
2000kg×m2 = .02r/s2

d) Finally, we want to know the time of one rotation. To do this we will use the equation

θ = θi +wit +
1
2

αt2
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We are only concerned with 1
2 αt2 because θi and wi both equal 0. All we need to do is solve for time.

θ =
1
2

αt2⇒ 2θ×α = t2⇒
√

2θ

α
= t

Now we plug in the known values to get time. √
2×2π

.02r/s2 = 25s
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10.5 Rotational Motion Problem Set

1. The wood plug, shown below, has a lower moment of inertia than the steel plug because it has a lower mass.

(a) Which of these plugs would be easier to spin on its axis? Explain.

Even though they have the same mass, the plug on the right has a higher moment of inertia (I), than the plug
on the left, since the mass is distributed at greater radius.

(b) Which of the plugs would have a greater angular momentum if they were spinning with the same angular
velocity? Explain.

2. Here is a table of some moments of inertia of commonly found objects:

a. Calculate the moment of inertia of the Earth about its spin axis.
b. Calculate the moment of inertia of the Earth as it revolves around the Sun.
c. Calculate the moment of inertia of a hula hoop with mass 2 kg and radius 0.5 m.
d. Calculate the moment of inertia of a rod 0.75 m in length and mass 1.5 kg rotating about one end.
e. Repeat d., but calculate the moment of inertia about the center of the rod.

3. Imagine standing on the North Pole of the Earth as it spins. You would barely notice it, but you would turn
all the way around over 24 hours, without covering any real distance. Compare this to people standing on the
equator: they go all the way around the entire circumference of the Earth every 24 hours! Decide whether the
following statements are TRUE or FALSE. Then, explain your thinking.

a. The person at the North Pole and the person at the equator rotate by 2π radians in 86,400 seconds.
b. The angular velocity of the person at the equator is 2π/86400 radians per second.
c. Our angular velocity in San Francisco is 2π/86400 radians per second.
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d. Every point on the Earth travels the same distance every day.
e. Every point on the Earth rotates through the same angle every day.
f. The angular momentum of the Earth is the same each day.
g. The angular momentum of the Earth is 2/5MR2

ω.
h. The rotational kinetic energy of the Earth is 1/5MR2

ω2.
i. The orbital kinetic energy of the Earth is 1/2MR2

ω2, where R refers to the distance from the Earth to
the Sun.

4. You spin up some pizza dough from rest with an angular acceleration of 5 rad/s2.

a. How many radians has the pizza dough spun through in the first 10 seconds?
b. How many times has the pizza dough spun around in this time?
c. What is its angular velocity after 5 seconds?
d. What is providing the torque that allows the angular acceleration to occur?
e. Calculate the moment of inertia of a flat disk of pizza dough with mass 1.5 kg and radius 0.6 m.
f. Calculate the rotational kinetic energy of your pizza dough at t = 5 s and t = 10 s.

5. Your bike brakes went out! You put your feet on the wheel to slow it down. The rotational kinetic energy of
the wheel begins to decrease. Where is this energy going?

6. Consider hitting someone with a Wiffle ball bat. Will it hurt them more if you grab the end or the middle of
the bat when you swing it? Explain your thinking, but do so using the vocabulary of moment of inertia (treat
the bat as a rod), angular momentum (imagine the bat swings down in a semi-circle), and torque (in this case,
torques caused by the contact forces the other person’s head and the bat are exerting on each other).

7. Why does the Earth keep going around the Sun? Shouldn’t we be spiraling farther and farther downward
towards the Sun, eventually falling into it? Why do low-Earth satellites eventually spiral down and burn up in
the atmosphere, while the Moon never will?

8. If most of the mass of the Earth were concentrated at the core (say, in a ball of dense iron), would the moment
of inertia of the Earth be higher or lower than it is now? (Assume the total mass stays the same.)

9. Two spheres of the same mass are spinning in your garage. The first is 10 cm in diameter and made of iron.
The second is 20 cm in diameter but is a thin plastic sphere filled with air. Which is harder to slow down?
Why? (And why are two spheres spinning in your garage?)

10. A game of tug-o-war is played . . . but with a twist (ha!). Each team has its own rope attached to a merry-
go-round. One team pulls clockwise, the other counterclockwise. Each pulls at a different point and with a
different force, as shown.

a. Who wins?
b. By how much? That is, what is the net torque?
c. Assume that the merry-go-round is weighted down with a large pile of steel plates. It is so massive that

it has a moment of inertia of 2000 kg ·m2. What is its angular acceleration?
d. How long will it take the merry-go-round to spin around once completely?

11. You have two coins; one is a standard U.S. quarter, and the other is a coin of equal mass and size, but with a
hole cut out of the center.

a. Which coin has a higher moment of inertia?
b. Which coin would have the greater angular momentum if they are both spun at the same angular velocity?
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12. A wooden plank is balanced on a pivot, as shown below. Weights are placed at various places on the plank.

Consider the torque on the plank caused by weight A.

a. What force, precisely, is responsible for this torque?
b. What is the magnitude (value) of this force, in Newtons?
c. What is the moment arm of the torque produced by weight A?
d. What is the magnitude of this torque, in N ·m?
e. Repeat parts (a – d) for weights B and C.
f. Calculate the net torque. Is the plank balanced? Explain.

13. A star is rotating with a period of 10.0 days. It collapses with no loss in mass to a white dwarf with a radius
of .001 of its original radius.

a. What is its initial angular velocity?
b. What is its angular velocity after collapse?

14. For a ball rolling without slipping with a radius of 0.10 m, a moment of inertia of 25.0 kg−m2, and a linear
velocity of 10.0 m/s calculate the following:

a. The angular velocity.
b. The rotational kinetic energy.
c. The angular momentum.
d. The torque needed to double its linear velocity in 0.2 sec.

15. A merry-go-round consists of a uniform solid disc of 225 kg and a radius of 6.0 m. A single 80 kg person
stands on the edge when it is coasting at 0.20 revolutions /sec. How fast would the device be rotating after the
person has walked 3.5 m toward the center. (The moments of inertia of compound objects add.)

16. In the figure we have a horizontal beam of length, L, pivoted on one end and supporting 2000 N on the other.
Find the tension in the supporting cable, which is at the same point at the weight and is at an angle of 30
degrees to the vertical. Ignore the weight of the beam.
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17. Two painters are on the fourth floor of a Victorian house on a scaffold, which weighs 400 N. The scaffold is
3.00 m long, supported by two ropes, each located 0.20 m from the end of the scaffold. The first painter of
mass 75 kg is standing at the center; the second of mass, 65.0 kg, is standing 1.00 m from one end.

a. Draw a free body diagram, showing all forces and all torques. (Pick one of the ropes as a pivot point.)
b. Calculate the tension in the two ropes.
c. Calculate the moment of inertia for rotation around the pivot point, which is supported by the rope with

the least tension. (This will be a compound moment of inertia made of three components.)
d. Calculate the instantaneous angular acceleration assuming the rope of greatest tension breaks.

18. A horizontal 60 N beam. 1.4 m in length has a 100 N weight on the end. It is supported by a cable, which is
connected to the horizontal beam at an angle of 37 degrees at 1.0 m from the wall. Further support is provided
by the wall hinge, which exerts a force of unknown direction, but which has a vertical (friction) component
and a horizontal (normal) component.

a. Find the tension in the cable.
b. Find the two components of the force on the hinge (magnitude and direction).
c. Find the coefficient of friction of wall and hinge.
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19. On a busy intersection a 3.00 m beam of 150 N is connected to a post at an angle upwards of 20.0 degrees to
the horizontal. From the beam straight down hang a 200N sign 1.00 m from the post and a 500 N signal light
at the end of the beam. The beam is supported by a cable, which connects to the beam 2.00 m from the post
at an angle of 45.0 degrees measured from the beam; also by the hinge to the post, which has horizontal and
vertical components of unknown direction.

a. Find the tension in the cable.
b. Find the magnitude and direction of the horizontal and vertical forces on the hinge.
c. Find the total moment of inertia around the hinge as the axis.
d. Find the instantaneous angular acceleration of the beam if the cable were to break.

20. There is a uniform rod of mass 2.0 kg of length 2.0 m. It has a mass of 2.6 kg at one end. It is attached to the
ceiling .40 m from the end with the mass. The string comes in at a 53 degree angle to the rod.

a. Calculate the total torque on the rod.
b. Determine its direction of rotation.
c. Explain, but don’t calculate, what happens to the angular acceleration as it rotates toward a vertical

position.

21. The medieval catapult consists of a 200 kg beam with a heavy ballast at one end and a projectile of 75.0 kg
at the other end. The pivot is located 0.5 m from the ballast and a force with a downward component of
550 N is applied by prisoners to keep it steady until the commander gives the word to release it. The beam is
4.00 m long and the force is applied 0.900 m from the projectile end. Consider the situation when the beam is
perfectly horizontal.

a. Draw a free-body diagram labeling all torques.
b. Find the mass of the ballast.
c. Find the force on the horizontal support.
d. How would the angular acceleration change as the beam moves from the horizontal to the vertical

position. (Give a qualitative explanation.)
e. In order to maximize range at what angle should the projectile be released?
f. What additional information and/or calculation would have to be done to determine the range of the

projectile?

Answers to Selected Problems

1. .
2. a. 9.74×1037 kg m2 b. 1.33×1047 kg m2 c. 0.5 kg m2 d. 0.28 kg m2 e. 0.07 kg m2

3. a. True, all rotate 2π for 86,400;sec which is 24 hours, b. True, ω = 2π/t and t = 86,400 s f. True, L is the
same g. L = Iω and I = 2/5 mr2 h. True, K = 1

2 Iω2 I = 2/5 mr2 sub− in K = 1/5 mr2ω2 i. True, K = 1
2 Iω2

I = mr2 sub− in K = 1
2 mr2ω2
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4. a. 250 rad b. 40 rad c. 25 rad/s d. Force applied perpendicular to radius allows α e. 0.27 kg m2, f. K5 = 84 J
and K10 = 340 J

5. .
6. Moment of inertia at the end 1/3 ML2 at the center 1/12 ML2, angular momentum, L = Iω and torque, τ = Iα

change the in the same way
7. .
8. Lower
9. Iron ball

10. a. 200 N team b. 40 N c. 0.02 rad/s2 d. 25 s
11. a. Coin with the hole b. Coin with the hole
12. a. weight b. 19.6 N c. plank’s length (0.8m) left of the pivot d. 15.7 N m, e. Ba. weight, Bb. 14.7 N, Bc.

plank’s length (0.3m) left of the pivot, Bd. 4.4 N m, Ca. weight, Cb. 13.6 N, Cc. plank’s length (1.00 m)
right of the pivot, Cd. 13.6 N m, f) 6.5 N m CC, g) no, net torque doesn’t equal zero

13. a. 7.27×10−6 Hz b. 7.27 Hz
14. a. 100 Hz b. 1.25×105 J c. 2500 J− s d. 12,500 m−N
15. 28 rev/sec
16. 2300 N
17. b. 771 N,1030 N c. 554 kgm2 d. 4.81rad/sec2

18. a. 300 N b. 240N,−22 N c. .092
19. a. 2280 N b. 856 n toward beam, 106 N down c. 425 kgm2 d. 3.39 rad/sec2

20. a. −1.28 Nm 20. CCW
21. a. 1411 kg c. 17410 N d. angular acc goes down as arm moves to vertical
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11.1 The Big Idea

The development of devices to measure time, like the pendulum, led to the analysis of periodic motion. Such motion
repeats itself in equal intervals of time (called periods) and is also referred to as harmonic motion. When an object
moves back and forth over the same path in harmonic motion it is said to be oscillating. If the distance such an
object travels in one oscillation remains constant, it is called simple harmonic motion (SHM). A grandfather clock’s
pendulum and the quartz crystal in a modern watch are examples of SHM.
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11.2 Key Concepts

• The oscillating object does not lose any energy in SHM. Friction is assumed to be zero.

• In harmonic motion there is always a restorative force, which attempts to restore the oscillating object to its
equilibrium position. The restorative force changes during an oscillation and depends on the position of the
object. In a spring the force is given by Hooke’s Law: ~F =−k~x; in a pendulum it is the component of gravity
along the path.

• Objects in simple harmonic motion do not obey the “Big Three” equations of motion because the acceleration
is not constant. As a spring compresses, the force (and hence the acceleration) increases. Similarly, as a
pendulum swings, the tangential component of the force of gravity changes. The equations of motion for
SHM are given in the Key Equations section.

• The period, T , is the amount of time needed for the harmonic motion to repeat itself, or for the object to go one
full cycle. In SHM, T is the time it takes the object to return to its exact starting point and starting direction.

• The frequency, f is the number of cycles an object goes through in 1 second. Frequency is measured in Hertz
(Hz). 1 Hz = 1 cycle per sec.

• The amplitude, A, is the distance from the equilibrium (or center) point of motion to either its lowest or highest
point (end points). The amplitude, therefore, is half of the total distance covered by the oscillating object. The
amplitude can vary in harmonic motion, but is constant in SHM.

• The kinetic energy and the speed are at a maximum at the equilibrium point, but the potential energy and
restorative force is zero there.

• At the end points the potential energy is at a maximum, while the kinetic energy and speed are zero. However
at the end points the restorative force and acceleration are at a maximum.

• In SHM since energy is conserved, often, the most fruitful method of calculating position and velocity is to
set the total energy equal to the sum of kinetic and potential energies. Similarly force and acceleration are best
calculated by using ∑~F = m~a.
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11.3 Key Equations and Definitions

Period Equations



T = 1
f Period is the inverse of frequency

Tspring = 2π

√
m
k

Period of mass m on a spring with constant k

Tpendulum = 2π

√
L
g

Period of a pendulum of length L

Kinematics of SHM

{
x(t) = x0 +Acos2π f (t− t0) Position of an object in SHM of Amplitude A
v(t) =−2π f Acos2π f (t− t0) Velocity of an object in SHM of Amplitude A
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11.4 Examples

Example 1

Question: The effective k of a diving board is 800N/m (we say effective because it bends in the direction of motion
instead of stretching like a spring, but otherwise behaves the same). A pudgy diver is bouncing up and down at the
end of the diving board. The y vs. t graph is shown below.

a) What is the distance between the lowest and the highest point of oscillation?

b) What is the y-position and velocity of the diver at t = 2?

c) What is the diver’s mass?

d) Write the sinusoidal equation of motion for the diver.

Solution:

a) As we can see from the graph the highest point is 2m and the lowest point is −2m. Therefore the distance is

|2m− (−2m)|= 4m

b) To find the y-position we will use the equation

y = yi +Acos(2π f (t− ti))

First we must solve for the frequency. We know that

f =
1
T

From the graph we know that the period is 2 seconds, so the frequency is 1
2 hz. All we need to do now is plug in the

values to find the position at t = 2.

y = yi +Acos(2π f (t− ti)) = 0+2× cos(
2π

2
(2−0) = 2× cosπ×2 = 4m

To find the velocity we take the equation

v =−2π f Asin(2π f (t− ti))

and plug in the known values.

v =−2π f Asin(2π f (t− ti)) =
−2π

πs
×2m× sin(

2π

πs
(2s−0s) = 3.0m/s
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Despite the fact that we have a negative value for the displacement (−1.3m) it makes sense that we would get a
positive velocity because, as we can see from the graph, the diving board is still moving down at t = 2.

c) To find the diver’s mass we will use the equation

T = 2π

√
m
k

and solve for m. Then it is a simple matter to plug in the known values to get the mass.

T = 2π

√
m
k
⇒ T

2π
=

√
m
k
⇒ (

T
2π

)2 =
m
k
⇒ k(

T
2π

)2 = m

Now we plug in what we know.

m = k(
T
2π

)2 = 800
N
m
(

πs
2π

)2 = 200kg

d) To get the sinusoidal equation we must first decide whether it is a cosine graph or a sine graph. Then we must find
the amplitude (A), vertical shift (D), horizontal shift (C), and period (B). Cosine is easier in this case so we will work
with it instead of sine. As we can see from the graph, the amplitude is 2, the vertical shift is 0, and the horizontal
shift is −.4. We solved for the period already. Therefore, we can write the sinusoidal equation of this graph.

AcosB(x−C)+D = 2cosπ(x+ .4)
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11.5 SHM Problem Set

1. While treading water, you notice a buoy way out towards the horizon. The buoy is bobbing up and down in
simple harmonic motion. You only see the buoy at the most upward part of its cycle. You see the buoy appear
10 times over the course of one minute.

a. What is the force that is leading to simple harmonic motion?
b. What is the period (T ) and frequency ( f ) of its cycle? Use the proper units.

2. A rope can be considered as a spring with a very high spring constant k, so high, in fact, that you don’t notice
the rope stretch at all before it “pulls back.”

a. What is the k of a rope that stretches by 1 mm when a 100 kg weight hangs from it?
b. If a boy of 50 kg hangs from the rope, how far will it stretch?
c. If the boy kicks himself up a bit, and then is bouncing up and down ever so slightly, what is his frequency

of oscillation? Would he notice this oscillation? If so, how? If not, why not?

3. If a 5.0 kg mass attached to a spring oscillates 4.0 times every second, what is the spring constant k of the
spring?

4. A horizontal spring attached to the wall is attached to a block of wood on the other end. All this is sitting on
a frictionless surface. The spring is compressed 0.3 m. Due to the compression there is 5.0 J of energy stored
in the spring. The spring is then released. The block of wood experiences a maximum speed of 25 m/s.

a. Find the value of the spring constant.
b. Find the mass of the block of wood.
c. What is the equation that describes the position of the mass?
d. What is the equation that describes the speed of the mass?
e. Draw three complete cycles of the block’s oscillatory motion on an x vs. t graph.

5. Give some everyday examples of simple harmonic motion.
6. Why doesn’t the period of a pendulum depend on the mass of the pendulum weight? Shouldn’t a heavier

weight feel a stronger force of gravity?
7. The pitch of a Middle C note on a piano is 263 Hz. This means when you hear this note, the hairs in your ears

wiggle back and forth at this frequency.

a. What is the period of oscillation for your ear hairs?
b. What is the period of oscillation of the struck wire within the piano?

8. The effective k of the diving board shown here is 800 N/m. (We say effective because it bends in the direction
of motion instead of stretching like a spring, but otherwise behaves the same.) A pudgy diver is bouncing up
and down at the end of the diving board, as shown. The y vs t graph is shown below.
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a. What is the distance between the lowest and highest points of oscillation?
b. What is the y−position of the diver at times t = 0 s, t = 2 s, and t = 4.6 s?
c. Estimate the man’s period of oscillation.
d. What is the diver’s mass?
e. Write the sinusoidal equation of motion for the diver.

9. The Sun tends to have dark, Earth-sized spots on its surface due to kinks in its magnetic field. The number of
visible spots varies over the course of years. Use the graph of the sunspot cycle above to answer the following
questions. (Note that this is real data from our sun, so it doesn’t look like a perfect sine wave. What you need
to do is estimate the best sine wave that fits this data.)

a. Estimate the period T in years.
b. When do we expect the next “solar maximum?”

10. The pendulum of a small clock is 1.553 cm long. How many times does it go back and forth before the second
hand goes forward one second?

11. On the moon, how long must a pendulum be if the period of one cycle is one second? The acceleration of
gravity on the moon is one sixth that of Earth.

12. A spider of 0.5 g walks to the middle of her web. The web sinks by 1.0 mm due to her weight. You may
assume the mass of the web is negligible.

a. If a small burst of wind sets her in motion, with what frequency will she oscillate?
b. How many times will she go up and down in one s? In 20 s?
c. How long is each cycle?
d. Draw the x vs t graph of three cycles, assuming the spider is at its highest point in the cycle at t = 0 s.

13. A mass on a spring on a frictionless horizontal surface undergoes SHM. The spring constant is 550 N/m and
the mass is 0.400 kg. The initial amplitude is 0.300 m.

a. At the point of release find:
a. the potential energy
b. the horizontal force on the mass
c. the acceleration as it is released

b. As the mass reaches the equilibrium point find:
a. the speed of the mass
b. the horizontal force on the mass
c. the acceleration of the mass

c. At a point .150 m from the equilibrium point find:
a. the potential and kinetic energy
b. the speed of the mass
c. the force on the mass
d. the acceleration of the mass

d. Find the period and frequency of the harmonic motion.
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14. A pendulum with a string of 0.750 m and a mass of 0.250 kg is given an initial amplitude by pulling it upward
until it is at a height of 0.100 m more than when it hung vertically. This is point P. When it is allowed to
swing it passes through point Q at a height of .050 m above the equilibrium position, the latter of which is
called point R.

a. Draw a diagram of this pendulum motion and at points P,Q, and R draw velocity and acceleration vectors.
If they are zero, state that also.

b. At point P calculate the potential energy.
c. At point R calculate the speed of the mass.
d. At point Q calculate the speed of the mass.
e. If the string were to break at points P,Q, and R draw the path the mass would take until it hits ground for

each point.
f. Find the tension in the string at point P.
g. Find the tension in the string at point R.
h. Find the period of harmonic motion.

Answers to Selected Problems

1. a. Buoyant force and gravity b. T = 6 s, f = 1/6 Hz
2. a. 9.8×105 N/m b. 0.5 mm c. 22 Hz, no,
3. 3.2×103 N/m
4. a. 110 N/m d. v(t) = (25)cos(83t)
5. .
6. .
7. a. 0.0038 s b. 0.0038 s
8. .
9. .

10. 4 times
11. 0.04 m
12. a. 16 Hz b. 16 complete cycles but 32 times up and down, 315 complete cycles but 630 times up and down c.

0.063 s
13. a. 24.8 J,165 N,413 m/s2 b. 11.1m/s,0,0 c. 6.2 J,18.6 J,9.49 m/s,82.5 N,206 m/s2 d. .169 sec,5.9 Hz
14. b. .245 J c. 1.40m/s d. 1.00 m/s f. 2.82 N g. 3.10 N
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12.1 The Big Idea

Objects in motion that return to the same position after a fixed period of time are said to be in harmonic motion.
Objects in harmonic motion have the ability to transfer some of their energy over large distances. They do so by
creating waves in a medium. Imagine pushing up and down on the surface of a bathtub filled with water. Water
acts as the medium that carries energy from your hand to the edges of the bathtub. Waves transfer energy over a
distance without direct contact with the initial source. Since waves are disturbances in an existing medium, they are
considered phenomena and not actual objects.
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12.2 Key Concepts

• A medium is the substance through which the wave travels. For example, water acts as the medium for ocean
waves, while air molecules act as the medium for sound waves.

• When a wave passes through a medium, the medium is only temporarily disturbed. When an ocean wave
travels from one side of the Mediterranean Sea to the other, no actual water molecules move this great distance.
Only the disturbance propagates (moves) through the medium.

• An object oscillating with frequency f will create waves which oscillate with the same frequency f.

• The speed v and wavelength λ of a wave depend on the nature of the medium through which the wave travels.

• There are two main types of waves we will consider: longitudinal waves and transverse waves.

• In longitudinal waves, the vibrations of the medium are in the same direction as the wave motion. A classic
example is a wave traveling down a line of standing dominoes: each domino will fall in the same direction as
the motion of the wave. A more physical example is a sound wave. For sound waves, high and low pressure
zones move both forward and backward as the wave moves through them.

• In transverse waves, the vibrations of the medium are perpendicular to the direction of motion. A classic
example is a wave created in a long rope: the wave travels from one end of the rope to the other, but the actual
rope moves up and down, and not from left to right as the wave does.

• Water waves act as a mix of longitudinal and transverse waves. A typical water molecule pretty much moves
in a circle when a wave passes through it.

• Most wave media act like a series of connected oscillators. For instance, a rope can be thought of as a large
number of masses (molecules) connected by springs (intermolecular forces). The speed of a wave through
connected harmonic oscillators depends on the distance between them, the spring constant, and the mass. In
this way, we can model wave media using the principles of simple harmonic motion.

• The speed of a wave on a string depends on the material the string is made of, as well as the tension in the
string. This is why tightening a string on your violin or guitar will change the sound it produces.

• The speed of a sound wave in air depends subtly on pressure, density, and temperature, but is about 343m/s at
room temperature.

• Resonance is a phenomenon that occurs when something that has a natural frequency of vibration (pendulum,
guitar, glass, etc.) is shaken or pushed at a frequency that is equal to its natural frequency of vibration. A
dramatic example of resonance is the Tacoma Narrows Bridge, which collapsed shortly after being built as a
result of wind vibrating it at its natural frequency.
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12.3 Key Equations

Basics

T =
1
f

[1] Wave period

v = λ f [2] Wave velocity

Common Frequencies

fbeat = | f1− f2| [3] Beat frequency from waves of frequency f1 and f2

fn =
nv
2L
| integer n [4] Standing waves restricted or unrestricted at both ends

fn =
nv
4L
| odd integer n [5] Standing waves restricted at one end

The Doppler Effect

When a source of a wave is moving towards you, the apparent frequency of the wave you detect is higher than that
emitted. For instance, if an ambulance approaches you while blaring a siren at 500 Hz, the sound you hear will be
slightly higher. This familiar phenomenon is known as the Doppler Effect. The opposite occurs for when the source
is moving away. If the observer is moving also, it is the relative velocities that matter. There is a difference in the
quantitative effect, depending on who is moving. (See the formulas below.) Note that these equations are for sound
waves only. While the effect is similar for light and electromagnetic waves the formulas are not exactly the same as
for sound.

Doppler Shifts:

fo = f
v+ vo

v− vs
fo (observed frequency) is shifted up when source and observer moving closer

fo = f
v− vo

v+ vs
fo (observed frequency) is shifted down when source and observer moving apart,where

v is the speed of sound, vs is the speed of the source, and vo is the speed of the observer
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12.4 Key Applications

• Constructive interference occurs when two waves combine to create a larger wave. This occurs when the
peaks of two waves line up.

• Destructive interference occurs when two waves combine and cancel each other out. This occurs when a peak
in one wave lines up with a trough in the other wave.

• When waves of two different frequencies interfere, a phenomenon known as beats occur. The frequency of a
beat is the difference of the two frequencies.

• When a wave meets a barrier, it is reflected and travels back the way it came. If the reflected wave interferes
with the initial wave in such a way that the nodes do not move, a standing wave can be created. The types of
standing waves that can form depend strongly on the speed of the wave and the size of the region in which it
is traveling.

• A typical standing wave is shown below. This is the motion of a simple jump-rope. Nodes are the places
where the rope doesn’t move at all; antinodes occur where the motion is greatest.

FIGURE 12.1
For this wave, the wavelength is . Since , the frequency of oscillation is .

• Higher harmonics can also form. Note that each end, where the rope is attached, must always be a node.
Below is an example of a rope in a 5th harmonic standing wave.

FIGURE 12.2
In general, the frequency of oscillation is , where n is the number of
antinodes. The thick, dotted lines represent the wave envelope: these
are the upper and lower limits to the motion of the string.

• Importantly, each of the above standing wave examples can also apply to sound waves in a closed tube,
electromagnetic waves in a wire or fiber optic cable, and so on. In other words,the standing wave examples
can apply to any kind of wave, as long as nodes are forced at both ends by whatever is containing/reflecting
the wave back on itself.

• If a node is forced at one end, but an antinode is forced at the other end, then a different spectrum of standing
waves is produced. For instance, the fundamental standing sound wave produced in a tube closed at one end is
shown below. In this case, the amplitude of the standing wave is referring to the magnitude of the air pressure
variations.
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FIGURE 12.3
For this standing wave, the wavelength is . Since , the frequency of
oscillation is . In general, the frequency of oscillation is , where is always
odd.
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12.5 Examples

Wavelength, Frequency, and Velocity

Question: A 120cm long string vibrates as a standing wave with four antinodes. The wave speed on the string is
48m/s. Find the wavelength and frequency of the standing wave.

Answer: We will solve for the wavelength first. The wavelength will then allow us to solve for the frequency.

Since there are 4 antinodes, there are two complete waves (see diagram above). Therefore, one complete wavelength
must equal to half the length of the string

λ =
120cm

2
= 60cm

Now that we have both the velocity and the wavelength of the wave we can solve for the frequency using the equation

v = f λ

Now we simply solve for the frequency and then plug in the known values.

v = f λ =
v
λ

Before we plug in the known values, we need to convert the wavelength from centimeters to meters. This will allow
us to cancel the units.

λ = 60cm× 1m
100cm

= .6m

Now we can solve for the frequency.

f =
v
λ
=

48m/s
.6m

= 80Hz

The Doppler Effect

Question: How fast would a student playing an A note (440Hz) have to move towards you in order for you to hear
a G note (784Hz)?

Answer: We will use the Doppler shift equation for when the objects are getting closer together and solve for the
speed of the student (the source).

fo = f (
v+ vo

v− vs
)⇒ fo× (v− vs) = f × (v+ vo)⇒ v fo− vs fo = f × (v+ vo)⇒ vs =−(

f × (v+ vo)− v fo

fo
)

Now we plug in the known values to solve for the velocity of the student.

vs =−(
f × (v+ vo)− v fo

fo
) =−(440Hz× (343m/s+0m/s)−343m/s×784Hz

784Hz
) = 151m/s
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12.6 Wave Motion Problem Set

1. A violin string vibrates, when struck, as a standing wave with a frequency of 260 Hz. When you place your
finger on the same string so that its length is reduced to 2/3 of its original length, what is its new vibration
frequency?

2. The simple bridge shown here oscillated up and down pretty violently four times every second as a result of
an earthquake.

a. What was the frequency of the shaking in Hz?
b. Why was the bridge oscillating so violently?
c. Calculate two other frequencies that would be considered “dangerous” for the bridge.
d. What could you do to make the bridge safer?

3. The speed of water waves in deep oceans is proportional to the wavelength, which is why tsunamis, with their
huge wavelengths, move at incredible speeds. The speed of water waves in shallow water is proportional to
depth, which is why the waves “break” at shore. Draw a sketch which accurately portrays these concepts.

4. Below you will find actual measurements of acceleration as observed by a seismometer during a relatively
small earthquake. An earthquake can be thought of as a whole bunch of different waves all piled up on top of
each other.

a. Estimate (using a ruler) the approximate period of oscillation T of the minor aftershock which occurs
around t = 40 sec.

b. Convert your estimated period from part (a) into a frequency f in Hz.
c. Suppose a wave with frequency f from part (b) is traveling through concrete as a result of the earthquake.

What is the wavelength λ of that wave in meters? (The speed of sound in concrete is approximately
v = 3200 m/s.)

5. The length of the western section of the Bay Bridge is 2.7 km.

a. Draw a side-view of the western section of the Bay Bridge and identify all the ’nodes’ in the bridge.
b. Assume that the bridge is concrete (the speed of sound in concrete is 3200 m/s). What is the lowest

frequency of vibration for the bridge? (You can assume that the towers are equally spaced, and that the
central support is equidistant from both middle towers. The best way to approach this problem is by
drawing in a wave that “works.”)
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c. What might happen if an earthquake occurs that shakes the bridge at precisely this frequency?

6. The speed of sound v in air is approximately 331.4 m/s+ 0.6T , where T is the temperature of the air in
Celsius. The speed of light c is 300,000 km/sec, which means it travels from one place to another on Earth
more or less instantaneously. Let’s say on a cool night (air temperature 10◦ Celsius) you see lightning flash
and then hear the thunder rumble five seconds later. How far away (in km) did the lightning strike?

7. Human beings can hear sound waves in the frequency range 20 Hz−20 kHz. Assuming a speed of sound of
343 m/s, answer the following questions.

a. What is the shortest wavelength the human ear can hear?
b. What is the longest wavelength the human ear can hear?

8. The speed of light c is 300,000 km/sec.

a. What is the frequency in Hz of a wave of red light (λ = 0.7 ? 10−6 m)?
b. What is the period T of oscillation (in seconds) of an electron that is bouncing up and down in response

to the passage of a packet of red light? Is the electron moving rapidly or slowly?

9. Radio signals are carried by electromagnetic waves (i.e. light waves). The radio waves from San Francisco
radio station KMEL (106.1 FM) have a frequency of 106.1 MHz. When these waves reach your antenna, your
radio converts the motions of the electrons in the antenna back into sound.

a. What is the wavelength of the signal from KMEL?
b. What is the wavelength of a signal from KPOO (89.5 FM)?
c. If your antenna were broken off so that it was only 2 cm long, how would this affect your reception?

10. Add together the two sound waves shown below and sketch the resultant wave. Be as exact as possible – using
a ruler to line up the waves will help. The two waves have different frequencies, but the same amplitude. What
is the frequency of the resultant wave? How will the resultant wave sound different?

11. Aborigines, the native people of Australia, play an instrument called the didgeridoo like the one shown above.
The didgeridoo produces a low pitch sound and is possibly the world’s oldest instrument. The one shown
above is about 1.3 m long and open at both ends.

a. Knowing that when a tube is open at both ends there must be an antinode at both ends, draw the first 3
harmonics for this instrument.

b. Derive a generic formula for the frequency of the nth standing wave mode for the didgeridoo, as was
done for the string tied at both ends and for the tube open at one end.
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12. Reread the difference between transverse and longitudinal waves. For each of the following types of waves,
tell what type it is and why. (Include a sketch for each.)

• sound waves
• water waves in the wake of a boat
• a vibrating string on a guitar
• a swinging jump rope
• the vibrating surface of a drum
• the “wave” done by spectators at a sports event
• slowly moving traffic jams

13. At the Sunday drum circle in Golden Gate Park, an Indian princess is striking her drum at a frequency of 2 Hz.
You would like to hit your drum at another frequency, so that the sound of your drum and the sound of her
drum “beat” together at a frequency of 0.1 Hz. What frequencies could you choose?

14. A guitar string is 0.70 m long and is tuned to play an E note ( f = 330 Hz). How far from the end of this string
must your finger be placed to play an A note ( f = 440 Hz)?

15. Piano strings are struck by a hammer and vibrate at frequencies that depend on the length of the string. A
certain piano string is 1.10 m long and has a wave speed of 80 m/s. Draw sketches of each of the four lowest
frequency nodes. Then, calculate their wavelengths and frequencies of vibration.

16. Suppose you are blowing into a soda bottle that is 20 cm in length and closed at one end.

a. Draw the wave pattern in the tube for the lowest four notes you can produce.
b. What are the frequencies of these notes?

17. You are inspecting two long metal pipes. Each is the same length; however, the first pipe is open at one end,
while the other pipe is closed at both ends.

a. Compare the wavelengths and frequencies for the fundamental tones of the standing sound waves in each
of the two pipes.

b. The temperature in the room rises. What happens to the frequency and wavelength for the open-on-one-
end pipe?

18. A train, moving at some speed lower than the speed of sound, is equipped with a gun. The gun shoots a bullet
forward at precisely the speed of sound, relative to the train. An observer watches some distance down the
tracks, with the bullet headed towards him. Will the observer hear the sound of the bullet being fired before
being struck by the bullet? Explain.

19. A 120 cm long string vibrates as a standing wave with four antinodes. The wave speed on the string is 48 m/s.
Find the wavelength and frequency of the standing wave.

20. A tuning fork that produces a frequency of 375 Hz is held over pipe open on both ends. The bottom end of the
pipe is adjustable so that the length of the tube can be set to whatever you please.

a. What is the shortest length the tube can be and still produce a standing wave at that frequency?
b. The second shortest length?
c. The one after that?

21. The speed of sound in hydrogen gas at room temperature is 1270 m/s. Your flute plays notes of 600,750, and
800 Hz when played in a room filled with normal air. What notes would the flute play in a room filled with
hydrogen gas?

22. A friend plays an A note (440 Hz) on her flute while hurtling toward you in her imaginary space craft at a
speed of 40 m/s. What frequency do you hear just before she rams into you?

23. How fast would a student playing an A note (440 Hz) have to move towards you in order for you to hear a G
note (784 Hz)?

24. Students are doing an experiment to determine the speed of sound in air. The hold a tuning fork above a
large empty graduated cylinder and try to create resonance. The air column in the graduated cylinder can be
adjusted by putting water in it. At a certain point for each tuning fork a clear resonance point is heard. The
students adjust the water finely to get the peak resonance then carefully measure the air column from water to

156

http://www.ck12.org


www.ck12.org Chapter 12. Wave Motion and Sound Version 2

top of air column. (The assumption is that the tuning fork itself creates an anti-node and the water creates a
node.) The following data table was developed:

TABLE 12.1:

Frequency OF tuning fork
(Hz)

Length of air column (cm) Wavelength (m) Speed of sound (m/s)

184 46
328 26
384 22
512 16
1024 24

Answers to Selected Problems

1. 390 Hz
2. a. 4 Hz b. It was being driven near its resonant frequency. c. 8 Hz,12 Hz d. (Note that earthquakes rarely

shake at more than 6 Hz).
3. .
4. .
5. a. 7 nodes including the 2 at the ends b. 3.6 Hz
6. 1.7 km
7. a. 1.7 cm b. 17 m
8. a. 4.3×1014 Hz b. 2.3×10−15 s− man that electron is moving fast
9. a. 2.828 m b. 3.352 m c. L = 1/4 λ so it would be difficult to receive the longer wavelengths.

10. Very low frequency
11. b. Same as closed at both ends
12. .
13. 1.9 Hz or 2.1 Hz.
14. 0.53 m
15. 2.2 m,36 Hz;1.1 m,73 Hz;0.733 m,110 Hz;0.55 m,146 Hz
16. 430 Hz;1.3×103 Hz;2.1×103 Hz;3.0×103 Hz;
17. a. The tube closed at one end will have a longer fundamental wavelength and a lower frequency. b. If the

temperature increases the wavelength will not change, but the frequency will increase accordingly.
18. struck by bullet first.
19. 80 Hz;0.6 m
20. a. 0.457 m b. 0.914 m c. 1.37 m
21. 2230 Hz;2780 Hz;2970 Hz
22. 498 Hz
23. 150 m/s
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13.1 The Big Idea

Conservation of charge is the fourth of the five conservation laws in physics. There are two types of charge: positive
and negative; the law of conservation of electric charge states that the net charge of the universe remains constant.
As with momentum and energy, in any closed system charge can be transferred from one body to another and can
move within the system but cannot leave the system.

Electromagnetism is associated with charge and is a fundamental force of nature, like gravity (which for us is
associated with mass). If charges are static, the only manifestation of electromagnetism is the Coulomb electric
force. In the same way the gravitational force that an object exerts upon other objects, and that other objects exert
on it, depends on the amount of mass it possesses, the Coulomb electric force that an object experiences depends
on the amount of electric charge the object possesses. Like gravity, the Coulomb electric force decreases with the
square of the distance. The Coulomb electric force is responsible for many of the forces we discussed previously:
the normal force, contact forces such as friction, and so on — all of these forces arise in the mutual attraction and
repulsion of charged particles.

Although the law determining the magnitude of the Coulomb electric force has the same form as the law of gravity,
the electric constant is 20 orders of magnitude greater than the gravitational constant. That is why electricity
normally dominates gravity at the atomic and molecular level. Since there is only one type of mass but two opposite
types of electric charge, gravity will dominate in large bodies unless there is a separation of charge.
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13.2 Electric Forces and Fields
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13.3 The Coulomb Force Law

The Coulomb Force Law states that any two charged particles (q1,q2) — with charge measured in units of Coulombs
— at a distance r from each other will experience a force of repulsion or attraction along the line joining them equal
to:

~Fe =
kq1q2

r2 The Coulomb Force [1]

Where

k = 8.987×109 N ·m2 ·C−2. The Electric Constant

This looks a lot like the Law of Universal Gravitation, which deals with attraction between objects with mass. The
big difference is that while any two masses experience mutual attraction, two charges can either attract or repel each
other, depending on whether the signs of their charges are alike:

Like gravitational (and all other) forces, Coulomb forces add as vectors. Thus to find the force on a charge from an
arrangement of charges, one needs to find the vector sum of the force from each charge in the arrangement.

Example 1

Question: Two negatively charged spheres (one with −12µC; the other with −3µC) are 3m apart. Where could you
place an electron so that it will be suspended in space between them with a net force of zero (for this problem we
will ignore the force of repulsion between the two charges because they are held in place)?
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Answer: Consider the diagram above; here rs→e is the distance between the electron and the small charge, while
~Fs→e is the force the electron feels due to it. For the electron to be balanced in between the two charges, the forces of
repulsion caused by the two charges on the electron would have to be balanced. To do this, we will set the equation
for the force exerted by two charges on each other equal and solve for a distance ratio. We will denote the difference
between the charges through the subscripts "s" for the smaller charge, "e" for the electron, and "l" for the larger
charge.

kqsqe

r2
s→e

=
kqlqe

r2
e→l

Now we can cancel. The charge of the electron cancels. The constant k also cancels. We can then replace the large
and small charges with the numbers. This leaves us with the distances. We can then manipulate the equation to
produce a ratio of the distances.

−3µC
r2

s→e
=
−3µC
r2

e→l
⇒ r2

s→e

r2
e→l

=
−12µC
−12µC

⇒ rs→e

re→l
=

√
1µC
4µC

=
1
2

Given this ratio, we know that the electron is twice as far from the large charge (−12µC) as from the small charge
(−12µC). Given that the distance between the small and large charges is 3m, we can determine that the electron
must be located 2m away from the large charge and 1m away from the smaller charge.

Electric Fields and Electric Forces

Gravity and the Coulomb force have a nice property in common: they can be represented by fields. Fields are a kind
of bookkeeping tool used to keep track of forces. Take the electromagnetic force between two charges given above:

~Fe =
kq1q2

r2

If we are interested in the acceleration of the first charge only — due to the force from the second charge — we can
rewrite this force as the product of q1 and kq2

r2 . The first part of this product only depends on properties of the object
we’re interested in (the first charge), and the second part can be thought of as a property of the point in space where
that object is.

In fact, the quantity kq2
r2 captures everything about the electromagnetic force on any object possible at a distance r

from q2. If we had replaced q1 with a different charge, q3, we would simply multiply q3 by kq2
r2 to find the new force

on the new charge. Such a quantity, kq2
r2 here, is referred to as the electric field from charge q2 at that point: in this

case, it is the electric field due to a single charge:

~E f =
kq
r2 [2] Electric field due to point charge q, distance r away
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The electric field is a vector quantity, and points in the direction that a force felt by a positive charge at that point
would. If we are given the electric field at some point, it is just a matter of multiplication — as illustrated above —
to find the force any charge q0 would feel at that point:

~Fe︸︷︷︸
Force on charge q0

= ~E f︸︷︷︸
Field

×q0︸︷︷︸
Charge

Force on charge q0 in an electric field

Note that this is true for all electric fields, not just those from point charges. In general, the electric field at a point
is the force a positive test charge of magnitude 1 would feel at that point. Any other charge will feel a force along
the same line (but possibly in the other direction) in proportion to its magnitude. In other words, the electric field
can be though of as "force per unit charge".

In the case given above, the field was due to a single charge. Such a field is shown in the figure below. Notice that
this a field due to a positive charge, since the field arrows are pointing outward. The field produced by a point charge
will be radially symmetric i.e., the strength of the field only depends on the distance, r, from the charge, not the
direction; the lengths of the arrows represent the strength of the field.

Example 2

Question: Calculate the electric field a distance of 4.0mm away from a −2.0µC charge. Then, calculate the force
on a −8.0µC charge placed at this point.

Answer: To calculate the electric field we will use the equation

E =
kq
r2
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Before we solve for the electric field by plugging in the values, we convert all of the values to the same units.

4.0mm× 1m
1000mm

= .004m

−2.0µC× 1C
1000000µC

=−2.0×10−6C

Now that we have consistent units we can solve the problem.

E =
kq
r2 =

9×109Nm2/C2×−2.0×10−6C
(.004m)2 =−1.1×109N/C

To solve for the force at the point we will use the equation

F = Eq

We already know all of the values so all we have to do is convert all of the values to the same units and then plug in
the values.

−8.0µC× 1C
1000000µC

=−8.0×10−6C

F = Eq =−8.0×10−6C×−1.1×109N/C = 9000N
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13.4 Fields Due to Several Charges

To find the field at a point due to an arrangement of charges — in fact, all electric fields arise due to some arrangement
of charges — we find the vector sum of the individual fields:

~Enet = ∑
i

~Ei [3] Net Electric Field

Electric fields are used more frequently than gravitational ones because there are two types of charge, which makes
electric force and potential energy harder to keep track of than their gravitational counterparts. To apply this approach
to gravitational forces — that is, to find a net gravitational field — one needs to repeat the steps above, with mass in
place of charge (left for the reader).

Example 3

Question: For the diagram above, draw (qualitatively) the electric field vectors at the points shown using the test
charge method.

Answer: We will start with Test Charge 1. Test charges are always positive and have magnitude 1. Therefore we
know that the test charge will want to go toward the negative charge and away from the positive charge (like charges
repel and opposite charges attract). The strength of the electric field felt by the test charge is dependent on the inverse
square of the distance of the charges as shown by the equation

E =
kq
r2

The farther away from the source of the field, the weaker the field becomes. Therefore Test Charge 1 will experience
a stronger field from the 1C charge. Because the distance from Test Charge 1 to the −1C is only slightly longer than
the distance from Test Charge 1 to the 1C charge, the vectors will be similar in length. Once we have determined the
relative scale of each vector, we can add them using the parallelogram method. The resultant vector is the electric
field at that point.

Finding the electric field at Test Charge 2 will involve all of the same steps. First we must determine which charge
Test Charge 2 is closer to. Like Test Charge 1, Test Charge 2 is closer to the 1C charge. However, Test Charge 2
is drastically closer whereas Test Charge 1 was only slightly closer. Therefore, the electric field that Test Charge 2
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experiences as a result of the 1C charge will be strong, thus resulting in a longer arrow. The distance between the
−1C and Test Charge 2 is large and therefore the electric field experienced by Test Charge 2 as a result of the −1C
charge will be small. The resultant vectors will look something like this.
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13.5 Electric Potential

Like gravity, the electric force can do work and has a potential energy associated with it. But like we use fields to
keep track of electromagnetic forces, we use electric potential, or voltage to keep track of electric potential energy.
So instead of looking for the potential energy of specific objects, we define it in terms of properties of the space
where the objects are.

The electric potential difference, or voltage difference (often just called voltage) between two points (A and B) in
the presence of an electric field is defined as the work it would take to move a positive test charge of magnitude 1
from the first point to the second against the electric force provided by the field. For any other charge q, then, the
relationship between potential difference and work will be:

∆VAB =
WAB

q
[4] Electric Potential

Rearranging, we obtain:

W︸︷︷︸
Work

= ∆VAB︸ ︷︷ ︸
Potential Difference

× q︸︷︷︸
Charge

The potential of electric forces to do work corresponds to electric potential energy:

∆UE,AB = q∆VAB [5] Potential energy change due to voltage change

The energy that the object gains or loses when traveling through a potential difference is supplied (or absorbed) by
the electric field — there is nothing else there. Therefore, it follows that electric fields contain energy.

To summarize: just as an electric field denotes force per unit charge, so electric potential differences represent
potential energy differences per unit charge. A useful mnemonic is to consider a cell phone: the battery has the
potential to do work for you, but it needs a charge! Actually, the analogy there is much more rigorous than it at first
seems; we’ll see why in the chapter on current. Since voltage is a quantity proportional to work it is a scalar, and
can be positive or negative.
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13.6 Electric Field of a Parallel Plate Capacitor

Suppose we have two parallel metal plates set a distance d from one another. We place a positive charge on one of
the plates and a negative charge on the other. In this configuration, there will be a uniform electric field between the
plates pointing from, and normal to, the plate carrying the positive charge. The magnitude of this field is given by

E =
V
d

where V is the potential difference (voltage) between the two plates.

The amount of charge, Q, held by each plate is given by

Q =CV

where again V is the voltage difference between the plates and C is the capacitance of the plate configuration.
Capacitance can be thought of as the capacity a device has for storing charge . In the parallel plate case the
capacitance is given by

C =
ε0A
d

where A is the area of the plates, d is the distance between the plates, and ε0 is the permittivity of free space whose
value is 8.84×10−12C/V ·m.

The electric field between the capacitor plates stores energy. The electric potential energy, UC, stored in the capacitor
is given by

UC =
1
2

CV 2

Where does this energy come from? Recall, that in our preliminary discussion of electric forces we assert that "like
charges repel one another". To build our initial configuration we had to place an excess of positive and negative
charges, respectively, on each of the metal plates. Forcing these charges together on the plate had to overcome the
mutual repulsion that the charges experience; this takes work. The energy used in moving the charges onto the plates
gets stored in the field between the plates. It is in this way that the capacitor can be thought of as an energy storage
device. This property will become more important when we study capacitors in the context of electric circuits in the
next chapter.

Note: Many home-electronic circuits include capacitors; for this reason, it can be dangerous to mess around with old
electronic components, as the capacitors may be charged even if the unit is unplugged. For example, old computer
monitors (not flat screens) and TVs have capacitors that hold dangerous amounts of charge hours after the power is
turned off.

More on Electric and Gravitational Potential

There are several differences between our approach to gravity and electricity that could cause confusion. First, with
gravity we usually used the concept of "energy", rather than "energy difference". Second, we spoke about it in
absolute terms, rather than "per unit mass".
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To address the first issue: when we dealt with gravitational potential energy we had to set some reference height
h = 0 where it is equal to mg×0 = 0. In this sense, we were really talking about potential energy differences rather
than absolute levels then also: at any point, we compared the gravitational potential energy of an object to the energy
it would have had at the reference level h = 0. When we used the formula

Ug = mg∆h

we implicitly set the initial point as the zero: no free lunch! For the same reason, we use the concept of electric
potential difference between two points — or we need to set the potential at some point to 0, and use it as a reference.
This is not as easy in this case though; usually a point very far away ("infinitely" far) is considered to have 0 electric
potential.

Regarding the second issue: in the chapter on potential energy, we could have gravitational potential difference
between two points at different heights as g∆h. This, of course, is the work required to move an object of mass one
a height ∆h against gravity. To find the work required for any other mass, we would multiply this by its magnitude.
In other words,

W︸︷︷︸
Work

= m︸︷︷︸
Mass

× g∆h︸︷︷︸
Potential Difference

Which is exactly analogous to the equation above.
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13.7 Summary of Relationships

The following table recaps the relationships discussed in this chapter.

TABLE 13.1: Relationship between "per Coulomb" and absolute quantities.

Property of Object. Property of Space. Combine Into:
Charge (Coulombs) Field* (Newtons/Coulomb) Force (Newtons)
Charge (Coulombs) Potential* (Joules/C) Potential Energy (Joules)

• An advanced note: for a certain class of forces called conservative forces e.g., gravity and the electromagnetic
force, a specific potential distribution corresponds to a unique field. Conversely, a field corresponds to a unique
potential distribution up to an additive constant. Remember though, it’s relative potential between points not
absolute potential that is physically relevant. In effect the field corresponds to a unique potential. In particular,
we see that in the case of conservative forces the scalar potential (one degree of freedom per point) carries all
information needed to determine the vector electric field (three degrees of freedom per point. The potential
formulation is even more useful than it at first seems.
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13.8 Key Concepts

• Electrons have negative charge and protons have positive charge. The magnitude of the charge is the same for
both: e = 1.6×10−19C.

• In any closed system, electric charge is conserved. The total electric charge of the universe does not change.
Therefore, electric charge can only be transferred not lost from one body to another.

• Normally, electric charge is transferred when electrons leave the outer orbits of the atoms of one body (leaving
it positively charged) and move to the surface of another body (causing the new surface to gain a negative net
charge). In a plasma, the fourth state of matter, all electrons are stripped from the atoms, leaving positively
charged ions and free electrons.

• Similarly-charged objects have a repulsive force between them. Oppositely charged objects have an attractive
force between them.

• The value of the electric field tells you the force that a charged object would feel if it entered this field. Electric
field lines tell you the direction a positive charge would go if it were placed in the field.

• Electric potential is measured in units of Volts (V) thus electric potential is often referred to as voltage. Electric
potential is the source of the electric potential energy.

• Positive charges move towards lower electric potential; negative charges move toward higher electric potential.
If you are familiar with a contour map then positive charges go ’downhill’ and negative charges go ’uphill’.

• Faraday cages consist of a metal box. All of your sensitive electronics are encased in a metal box called a
Faraday cage. The Faraday cage protects everything inside from external electric fields. Basically the electrons
in the metal box move around to cancel out the electric field, thus preventing it from coming inside the box
and thus preventing movement of charge and possible blown out electronic chips. Cars and airplanes, being
enclosed in metal, are also Faraday cages and thus the safest place to be in a lightning storm.

MEDIA
Click image to the left for more content.
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13.9 Key Applications

• In problems that ask for excess negative or positive charge, remember that each electron has one unit of the
fundamental charge e = 1.6×10−19C.

• To find the speed of a particle after it traverses a voltage difference, use the equation for the conservation of
energy: q∆V = 1

2 mv2

• Force and electric field are vectors. Use your vector math skills (i.e. keep the x and y directions separate)
when solving two-dimensional problems.

173

http://www.ck12.org


13.10. Electricity Problem Set www.ck12.org

13.10 Electricity Problem Set

1. After sliding your feet across the rug, you touch the sink faucet and get shocked. Explain what is happening.
2. What is the net charge of the universe? Of your toaster?
3. As you slide your feet along the carpet, you pick up a net charge of +4 mC. Which of the following is true?

a. You have an excess of 2.5×1016 electrons
b. You have an excess of 2.5×1019 electrons
c. You have an excess of 2.5×1016 protons
d. You have an excess of 2.5×1019 protons

4. You rub a glass rod with a piece of fur. If the rod now has a charge of−0.6 µC, how many electrons have been
added to the rod?

a. 3.75×1018

b. 3.75×1012

c. 6000
d. 6.00×1012

e. Not enough information

5. What is the direction of the electric field if an electron initially at rest begins to move in the North direction as
a result of the field?

a. North
b. East
c. West
d. South
e. Not enough information

6. Two metal plates have gained excess electrons in differing amounts through the application of rabbit fur. The
arrows indicate the direction of the electric field which has resulted. Three electric potential lines, labeled
A,B, and C are shown. Order them from the greatest electric potential to the least.

a. A,B,C
b. C,B,A
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c. B,A,C
d. B,C,A
e. A = B =C . . . theyÕre all at the same potential

7. The diagram to the right shows a negatively charged electron. Order the electric potential lines from greatest
to least.

a. A,B,C
b. C,B,A
c. B,A,C
d. B,C,A
e. A = B =C . . . theyÕre all at the same electric potential

8. The three arrows shown here represent the magnitudes of the electric field and the directions at the tail end
of each arrow. Consider the distribution of charges which would lead to this arrangement of electric fields.
Which of the following is most likely to be the case here?

a. A positive charge is located at point A
b. A negative charge is located at point B
c. A positive charge is located at point B and a negative charge is located at point C
d. A positive charge is located at point A and a negative charge is located at point C
e. Both answers a) and b) are possible

9. Particles A and B are both positively charged. The arrows shown indicate the direction of the forces acting on
them due to an applied electric field (not shown in the picture). For each, draw in the electric field lines that
would best match the observed force.
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10. To the right are the electric potential lines for a certain arrangement of charges. Draw the direction of the
electric field for all the black dots.

11. A suspended pith ball possessing +10 µC of charge is placed 0.02 m away from a metal plate possessing
−6 µC of charge.

a. Are these objects attracted or repulsed?
b. What is the force on the negatively charged object?
c. What is the force on the positively charged object?

12. Calculate the electric field a distance of 4.0 mm away from a −2.0 µC charge. Then, calculate the force on a
−8.0 µC charge placed at this point.

13. Consider the hydrogen atom. Does the electron orbit the proton due to the force of gravity or the electric
force? Calculate both forces and compare them. (You may need to look up the properties of the hydrogen
atom to complete this problem.)

14. As a great magic trick, you will float your little sister in the air using the force of opposing electric charges.
If your sister has 40 kg of mass and you wish to float her 0.5 m in the air, how much charge do you need to
deposit both on her and on a metal plate directly below her? Assume an equal amount of charge on both the
plate and your sister.

15. Copy the arrangement of charges below. Draw the electric field from the −2 C charge in one color and the
electric field from the +2 C charge in a different color. Be sure to indicate the directions with arrows. Now
take the individual electric field vectors, add them together, and draw the resultant vector. This is the electric
field created by the two charges together.

16. A proton traveling to the right moves in between the two large plates. A vertical electric field, pointing
downwards with magnitude 3.0 N/C, is produced by the plates.
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a. What is the direction of the force on the proton?
b. Draw the electric field lines on the diagram.
c. If the electric field is 3.0 N/C, what is the acceleration of the proton in the region of the plates?
d. Pretend the force of gravity doesnÕt exist; then sketch the path of the proton.
e. We take this whole setup to another planet. If the proton travels straight through the apparatus without

deflecting, what is the acceleration of gravity on this planet?

17. A molecule shown by the square object shown below contains an excess of 100 electrons.

a. What is the direction of the electric field at point A, 2.0×10−9 m away?

b. What is the value of the electric field at point A?
c. A molecule of charge 8.0 µC is placed at point A. What are the magnitude and direction of the force

acting on this molecule?

18. Two negatively charged spheres (one with −12 µC; the other with −3 µC) are 3 m apart. Where could you
place an electron so that it will be suspended in space between them with zero net force? For problems 19, 20,
and 21 assume 3−significant digit accuracy in all numbers and coordinates. All charges are positive.

19. Find the direction and magnitude of the force on the charge at the origin (see picture). The object at the origin
has a charge of 8 µC, the object at coordinates (−2 m, 0) has a charge of 12 µC, and the object at coordinates
(0,−4 m) has a charge of 44 µC. All distance units are in meters.

20. A 2 C charge is located at the origin and a 7 C charge is located at (0,6 m). Find the electric field at the
coordinate (10 m,0). It may help to draw a sketch.

21. A metal sphere with a net charge of +5 µC and a mass of 400 g is placed at the origin and held fixed there.

a. Find the electric potential at the coordinate (6 m,0).
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b. If another metal sphere of −3 µC charge and mass of 20 g is placed at the coordinate (6 m,0) and left
free to move, what will its speed be just before it collides with the metal sphere at the origin?

22. Collisions of electrons with the surface of your television set give rise to the images you see. How are the
electrons accelerated to high speed? Consider the following: two metal plates (The right hand one has small
holes allow electrons to pass through to the surface of the screen.), separated by 30 cm, have a uniform electric
field between them of 400 N/C.

a. Find the force on an electron located at a point midway between the plates
b. Find the voltage difference between the two plates
c. Find the change in electric potential energy of the electron when it travels from the back plate to the front

plate
d. Find the speed of the electron just before striking the front plate (the screen of your TV)

178

http://www.ck12.org


www.ck12.org Chapter 13. Electricity Version 2

23. Two pith balls of equal and like charges are repulsed from each other as shown in the figure below. They both
have a mass of 2 g and are separated by 30◦. One is hanging freely from a 0.5 m string, while the other, also
hanging from a 0.5 m string, is stuck like putty to the wall.

a. Draw the free body diagram for the hanging pith ball
b. Find the distance between the leftmost pith ball and the wall (this will involve working a geometry

problem)
c. Find the tension in the string (Hint: use y−direction force balance)
d. Find the amount of charge on the pith balls (Hint: use x−direction force balance)

Answers to Selected Problems

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. .
9. .

10. .
11. b. 1350 N c. 1350 N
12. a. 1.1×109 N/C b. 9000 N
13. Fg = 1.0×10−47 N and Fe = 2.3×10−8 N. The electric force is 39 orders of magnitudes bigger.
14. 1.0×10−4C
15. .
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16. a. down b. Up 16c,5.5×1011 m/s2 e. 2.9×108 m/s2

17. a. Toward the object b. 3.6×104 N/C to the left with a force of 2.8×10−7 N
18. Twice as close to the smaller charge, so 2 m from 12µC charge and 1 m from 3µC charge.
19. 0.293 N and at 42.5◦

20. 624 N/C and at an angle of −22.4◦ from the +x− axis.
21. a. 7500V b. 1.5 m/s
22. a. 6.4×10−17 N b. 1300V c. 2.1×10−16 J d. 2.2×107 m/s
23. b. 0.25m c. FT = 0.022 N d. 0.37µC
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CHAPTER 14 Electric Circuits Version 2
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14.1 The Big Ideas

In the last chapter, we looked at static configurations of charges. In general, problems with moving charges are very
difficult to solve; the field that deals with these is called electrodynamics. In this chapter, we consider how charge
can flow through conducting wires connecting opposite ends of a battery. Such a setup, called a circuit usually
involves a current, a voltage source, and resistors.

Conductors have an effectively infinite supply of charge, so when they are placed in an electric field, a separation
of charge occurs. A battery with a potential drop across the ends creates such an electric field; when the ends are
connected with a wire, charge will flow across it. The term given to the flow of charge is electric current, and it is
measured in Amperes (A) — Coulombs per second. Current is analogous to a river of water, but instead of water
flowing, charge does.

Voltage is the electrical energy density (energy divided by charge) and differences in this density (voltage) cause
electric current. Batteries often provide a voltage difference across the ends of a circuit, but other voltage sources
exist. If current is a river, differences in voltage can be thought of as pipes coming out of a water dam at different
heights. The lower the pipe along the dam wall, the larger the water pressure, thus the higher the voltage.

Resistance is the amount a device in the wire resists the flow of current by converting electrical energy into other
forms of energy. A resistor could be a light bulb, transferring electrical energy into heat and light or an electric
motor that converts electric energy into mechanical energy. The difference in energy density across a resistor or
other electrical device is called voltage drop. Resistance is analogous to rocks and other objects that impede the flow
of water, transforming the water’s kinetic energy into heat, sound, and other forms of energy through contact forces.

This is what a typical circuit looks like:
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14.2 Circuit Basics

We use the following symbols to represent the quantities discussed above:

TABLE 14.1: Circuit Quantities

Name Symbol Electrical Symbol Units Everyday device
Voltage V Volts (V) Battery, the plugs in

your house, etc.

Current

(flow of
charge)

I = ∆q
∆t Amps (A)

A = C/s

Whatever you plug
into your wall sock-
ets draws current

Resistance R Ohm (Ω) Light bulb, Toaster,
etc.

Loop and Junction Rules for Voltage/Current

In electric circuits (closed loops of wire with resistors and constant voltage sources) energy must be conserved. It
follows that changes in energy density, the algebraic sum of voltage drops and voltage sources, around any closed
loop will equal zero.

In an electric junction or node there is more than one possible path for current to flow. For charge to be conserved at
a junction the current into the junction must equal the current out of the junction.

Ohm’s Law

The resistance of an object — described above — is quantified as the ratio of the voltage drop across it to the amount
of current that will flow from that voltage. Note that the current depends on the voltage drop; here, as above we use
V instead of ∆V to mean voltage difference (both are accepted ways).

R =
V
I

[1] Definition of Resistance

Generally, more current flowing through a resistor will cause a higher voltage drop. For the special class of resistors
discussed in this class this ratio is a constant — the current flowing across these resistors will rise at the same rate as
the voltage difference supplied. In other words, the resistance does not depend on the amount of current that flows
through the resistor, or the voltage drop across it. This relationship is known as Ohm’s Law, for a constant current
it is usually written as

V = IR [2] Ohm’s Law
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For sources of constant voltage, such as batteries, the current varies with resistance:

I =
V
R

[3]

Unlike equation [1], where R varied with current, we can use equation [2] to find the current, voltage drop, or
resistance across a resistor when given the other two. When dealing with a constant current, use equation [2], but
when dealing with a battery driven circuit (a source of constant voltage difference), use equation [3].

Power

Power is the rate at which energy is lost by a system. The units of power are Watts (W), which equal Joules per
second(1W = 1J/s). Therefore, a 60 W light bulb releases 60 Joules of energy every second.

The equation used to calculate the power dissipated in a circuit or across a resistor is:

P = IV = I2R︸︷︷︸
Since V=IR

[4] Power Dissipated Through a Voltage Drop

As with OhmÕs Law, one must be careful not to mix apples with oranges. If you want the power of the entire circuit,
then you multiply the total voltage of the power source by the total current coming out of the power source. If you
want the power dissipated (i.e. released) by a light bulb, then you multiply the voltage drop across the light bulb by
the current going through that light bulb.

Resistors in Series and in Parallel

Sometimes, circuits have many resistors in various geometrical arrangements. When in series, two or more resistors
are connected end to end (See picture). In this case the resistors receive the same current, but since they can have
different resistances they may have different voltage drops across them. Analogously, there may be more rocks at
some points in the river than in others, but if there is only one way for the river to flow, the current has to be the same
at all points. It follows from Ohm’s law that

Rtotal = R1 +R2 +R3 + . . . [5] Resistors in Series

Since the total resistance will increase with each resistor added in series, adding resistors in series will cause the less
current to flow at a set voltage (according to Ohm’s Law for constant voltage sources, [3]).

When two or more resistors are connected together at both ends, they are said to be "in parallel" (see picture). There
are many rivers (the river splits into streams), so all resistors receive different amounts of current. But since they
all connect the same points on the circuit, the voltage drops across them have to be equal. The rule for combining
resistors in parallel is

1
Rtotal

=
1

R1
+

1
R2

+
1

R3
+ . . . [6] Resistors in Parallel

Since the total resistance will decrease with the number or resistors in parallel, adding resistors in parallel to existing
ones will cause more current to flow through a circuit.
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Ohm’s Law and Total Quantities

Ohm’s law is the main relationship for electric circuits but it is often misused. In order to calculate the voltage drop
across a light bulb — or any single resistor — use the formula:

Vlightbulb = IlightbulbRlightbulb

.

Using the formulas and the rules above, a circuit with any number of resistors (and voltage sources) can be modeled
as a circuit with just one voltage source and one resistor, for which Ohm’s Law also holds. For the total current
flowing out of the power source, you need the total resistance of the circuit and the total current:

Vtotal = ItotalRtotal [7]

This concept is illustrated below.

Example on Circuit Math

Question: Analyze the diagram below.

a) Find the current going out of the power supply.

b) How many Joules per second of energy is the power supply giving out?

c) Find the current going through the 75Ω light bulb.

d) Order the light bulbs in terms of brightness.

e) If the light bulbs were all wired in parallel, order them in terms of brightness.

Answer

a) To find the current going out of the power supply, we will use equation [7], Vtotal = ItotalRtotal . We already have
the total voltage drop (120V) and we are trying to solve for the current. This means that we need to know the total
resistance before we can find the current.

To solve for the resistance we will apply the two rules for resistors (series and parallel) because we have both in
are circuit. First, we must combine the two resistors in parallel so that we can treat the entire circuit as a series.
According to equation [6],

1
R

par==1
75Ω+ 1

45Ω
= 120

3375 Ω

Because 120
3375 Ω is equal to 1

R
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par ,weneedto f lipthe f ractiontoget R_total .

Now that we have three resistors in series (the two in parallel can be counted as one), we simply need to add them to
get the total resistance.

R

total=50Ω+ 3375
120 Ω+50Ω = 128.125Ω

We can now solve for the current by using equation [7]

Itotal =
Vtotal

Rtotal
=

120V
128.125Ω

= .94A

This is total net current through the circuit; it’s also the current across the 50Ω resistors, but not the ones connected
in parallel.

b) To find the power dissipated, we will use equation [4].

P = I×∆V = .94A×120V = 112W

c) To find the current going through the 75Ω light bulb, we must realize that a total of .94A goes through the two
light bulbs in parallel; according to the junction rule above, the currents across the two light bulbs must add to this.
Now we must find what proportion of the current the 75Ω light bulb gets. To do this, we use our knowledge that
resistors in parallel have the same voltage drop and Ohm’s Law:

V75 = I75×75Ω =V45 = I45×45Ω

I45 + I75 = .94A, so I45 = .94A− I75

Therefore,

I75×75Ω = (.94A− I75)×45Ω

Solving for the needed current, we find:

I75 ≈ .35A

d) The brightness is determined by the power dissipated. More power means a brighter lightbulb. According to
equation [4], the power dissipated by a resistor can be written as I2R. Since we know the resistance of and current
across every resistor, we can simply calculate this quantity for each one. The order is 50Ω’s, 45Ω, then 75Ω. The
50Ω is brighter than the 45Ω because the 50Ω gets considerably more current.

e) When the bulbs are wired entirely in parallel, the voltage drops across them will be the same. Since P = IV , the
way to determine the brightest bulb is to look at the currents across them, which will be inversely related with their
resistances. So, the bulb with the lowest resistance will be the brightest, the one with the second lowest resistance
will be second, and so on. Therefore the order is 45Ω, 50Ω, and finally 75Ω.
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14.3 Capacitors in Circuits (Steady-State)

When a capacitor is placed in a circuit, current does not actually travel across it. Rather, equal and opposite charge
begins to build up on opposite sides of the capacitor — mimicking a current — until the electric field in the capacitor
creates a potential difference across it that balances the voltage drop across any parallel resistors or the voltage
source itself (if there are no resistors in parallel with the capacitor). The ratio of charge on a capacitor to potential
difference across it is called capacitance:

C =
Q
V

[1] Definition of Capacitance
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14.4 Capacitors in Series and in Parallel

Like resistors, combinations of capacitors in circuits can be combined into one ’effective’ capacitor. The rules for
combining them are reversed from resistors:

Cparallel =C1 +C2 +C3 + . . . [5] Capacitors in parallel add like resistors in series
1

Cseries
=

1
C1

+
1

C2
+

1
C3

+ . . . [6] Capacitors in series add like resistors in parallel
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14.5 Charging and Discharging Capacitors
(Transient)

When a capacitor is initially uncharged, it is very easy to increase the amount of charge on its plates. As charge
builds, the charge present repels new charge with more and more force. Due to this effect, the charging of a capacitor
follows a logarithmic curve. When a circuit passes current through a resistor into a capacitor, the capacitor eventually
Òfills upÓ and no more current flows across it. A typical RC circuit is shown below; when the switch is closed, the
capacitor discharges with an exponentially decreasing current:

Q(t) = Q0e
−t
τ [7] Discharge rate of a capacitor, where τ = RC and Q0 =VĊ

Q(t) = Q0(1− e
−t
τ ) [8] Charge rate of a capacitor, where τ = RC and Q0 =VĊ

I(t) = I0(e
−t
τ [9] Discharge and Charge rate for current, where τ = RC andI0 =

V
R

Charging a capacitor involves moving charges through a potential difference; as we saw in the electricity chapter,
this results in electric potential energy being stored in the capacitor:

U =
1
2

CV 2 [10] Potential energy stored in a capacitor
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14.6 Capacitor Example

Question: Consider the figure above when switch S is open. Note that the power supply is set to 24 V.

a) What is the voltage drop across the 20Ω resistor?

b) What current flows through the 60Ω resistor?

c) What is the voltage drop across the 20 microfarad capacitor?

d) What is the charge on the capacitor?

e} How much energy is stored in that capacitor?

Answer:

a) When the capacitor is charged — in the steady state — no current flows across it, and we basically have a circuit
with two resistors in series. Accordingly, the voltage drop across the 20Ω resistor will be in the same proportion to
the net voltage across the circuit as its resistance is to the net resistance (see circuits chapter):

20Ω

20Ω+60Ω
= .25

This means that the voltage drop across the resistor is

.25×24V = 6V

b) Since there is only one path for the current to take, its value is the same everywhere on the circuit; all we have to
do is find the total current. This will then also be the amount of current that flows through the 60Ω resistor. We can
find it by applying Ohm’s Law for the circuit:

Rtotal = 60Ω+20Ω = 80Ω

Since we have the total resistance and the total voltage, we can solve for the total current using Ohm’s law.

V = RI⇒ I =
V
R
=

24V
80Ω

= .3A

The current flowing through the resistor is therefore .3A.

c) We can find the voltage drop across the 20µF capacitor by realizing that the voltage drop across any parallel
paths in a circuit have to be equal; otherwise the loop rule would be violated. Therefore, the voltage drop across the
capacitor is the same as the voltage drop across the 60Ω resistor. We can find this analogously to how we found the
voltage drop across the other resistor:

60Ω

20Ω+60Ω
= .75

.75×24V = 18V

190

http://www.ck12.org


www.ck12.org Chapter 14. Electric Circuits Version 2

d) To find the charge stored in the capacitor we will use the equation

Q =CV

First we must convert the capacitor into the correct units for the equation. Then we can substitute in the values and
solve for the charge stored.

20µF× 1F
1000000µF

= 2.0×10−5F

Q =CV = 2.0×10−5F×18V = 3.6×10−4C

e) The potential energy stored in a capacitor is

U =
1
2

CV 2

All we need to do is plug in the known values and get the potential energy.

U =
1
2

CV 2 =
1
2
×2.0×10−5F× (18V)2 = 3.2×10−3
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14.7 Key Terms

• DC Power: Voltage and current flow in one direction. Examples are batteries and the power supplies we use
in class.

• AC Power: Voltage and current flow in alternate directions. In the US they reverse direction 60 times a second.
(This is a more efficient way to transport electricity and electrical devices do not care which way it flows as
long as current is flowing. Note: your TV and computer screen are actually flickering 60 times a second due
to the alternating current that comes out of household plugs. Our eyesight does not work this fast, so we never
notice it. However, if you film a TV or computer screen the effect is observable due to the mismatched frame
rates of the camera and TV screen.) Electrical current coming out of your plug is an example.

• Ammeter: A device that measures electric current. You must break the circuit to measure the current.
Ammeters have very low resistance; therefore you must wire them in series.

• Voltmeter: A device that measures voltage. In order to measure a voltage difference between two points,
place the probes down on the wires for the two points. Do not break the circuit. Volt meters have very high
resistance; therefore you must wire them in parallel.

• Voltage source: A power source that produces fixed voltage regardless of what is hooked up to it. A battery is
a real-life voltage source. A battery can be thought of as a perfect voltage source with a small resistor (called
internal resistance) in series. The electric energy density produced by the chemistry of the battery is called
emf, but the amount of voltage available from the battery is called terminal voltage. The terminal voltage
equals the emf minus the voltage drop across the internal resistance (current of the external circuit times the
internal resistance.)
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14.8 Electric Circuits Problem Set

1. The current in a wire is 4.5 A.

a. How many coulombs per second are going through the wire?
b. How many electrons per second are going through the wire?

2. A light bulb with resistance of 80 Ω is connected to a 9 V battery.

a. What is the electric current going through it?
b. What is the power (i.e. wattage) dissipated in this light bulb with the 9 V battery?
c. How many electrons leave the battery every hour?
d. How many Joules of energy leave the battery every hour?

3. A 120 V,75 W light bulb is shining in your room and you ask yourselfÉ

a. What is the resistance of the light bulb?
b. How bright would it shine with a 9 V battery (i.e. what is its power output)?

4. A bird is standing on an electric transmission line carrying 3000 A of current. A wire like this has about
3.0×10−5 Ω of resistance per meter. The birdÕs feet are 6 cm apart. The bird, itself, has a resistance of about
4×105 Ω.

a. What voltage does the bird feel?
b. What current goes through the bird?
c. What is the power dissipated by the bird?
d. By how many Joules of energy does the bird heat up every hour?

5. Which light bulb will shine brighter? Which light bulb will shine for a longer amount of time? Draw the
schematic diagram for both situations. Note that the objects on the right are batteries, not resistors.
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6. Regarding the circuit to the right.

a. If the ammeter reads 2 A, what is the voltage?
b. How many watts is the power supply supplying?
c. How many watts are dissipated in each resistor?

7. Three 82 Ω resistors and one 12 Ω resistor are wired in parallel with a 9 V battery.

a. Draw the schematic diagram.
b. What is the total resistance of the circuit?

8. What will the ammeter read for the circuit shown to the right?

9. Draw the schematic of the following circuit.

10. What does the ammeter read and which resistor is dissipating the most power?

11. Analyze the circuit below.

a. Find the current going out of the power supply
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b. How many Joules per second of energy is the power supply giving out?
c. Find the current going through the 75 Ω light bulb.
d. Find the current going through the 50 Ω light bulbs (hint: it’s the same, why?).
e. Order the light bulbs in terms of brightness
f. If they were all wired in parallel, order them in terms of brightness.

12. Find the total current output by the power supply and the power dissipated by the 20 Ω resistor.

13. You have a 600 V power source, two 10 Ω toasters that both run on 100 V and a 25 Ω resistor.

a. Show me how you would wire them up so the toasters run properly.
b. What is the power dissipated by the toasters?
c. Where would you put the fuses to make sure the toasters don’t draw more than 15 Amps?
d. Where would you put a 25 Amp fuse to prevent a fire (if too much current flows through the wires they

will heat up and possibly cause a fire)?

14. Look at the following scheme of four identical light bulbs connected as shown. Answer the questions below
giving a justification for your answer:

a. Which of the four light bulbs is the brightest?
b. Which light bulbs are the dimmest?
c. Tell in the following cases which other light bulbs go out if:
d. bulb A goes out (ii). bulb B goes out (iii). bulb D goes out
e. Tell in the following cases which other light bulbs get dimmer, and which get brighter if:
f. bulb B goes out (ii). bulb D goes out

15. Refer to the circuit diagram below and answer the following questions.

a. What is the resistance between A and B?
b. What is the resistance between C and B?
c. What is the resistance between D and E?
d. What is the the total equivalent resistance of the circuit?
e. What is the current leaving the battery?
f. What is the voltage drop across the 12 Ω resistor?
g. What is the voltage drop between D and E?
h. What is the voltage drop between A and B?
i. What is the current through the 25 Ω resistor?
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j. What is the total energy dissipated in the 25 Ω if it is in use for 11 hours?

16. In the circuit shown here, the battery produces an emf of 1.5 V and has an internal resistance of 0.5 Ω.

a. Find the total resistance of the external circuit.
b. Find the current drawn from the battery.
c. Determine the terminal voltage of the battery
d. Show the proper connection of an ammeter and a voltmeter that could measure voltage across and current

through the 2 Ω resistor. What measurements would these instruments read?

17. Students measuring an unknown resistor take the following measurements:

TABLE 14.2:

Voltage (v) Current (a)
15 .11
12 .08
10 .068
8 .052
6 .04
4 .025
2 .01

(a) Show a circuit diagram with the connections to the power supply, ammeter and voltmeter.

(b) Graph voltage vs. current; find the best-fit straight line.

(c) Use this line to determine the resistance.

(d) How confident can you be of the results?

(e) Use the graph to determine the current if the voltage were 13 V.

18. Students are now measuring the terminal voltage of a battery hooked up to an external circuit. They change
the external circuit four times and develop the following table of data:
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TABLE 14.3:

Terminal Voltage (v) Current (a)
14.63 .15
14.13 .35
13.62 .55
12.88 .85

(a) Graph this data, with the voltage on the vertical axis.

(b) Use the graph to determine the emf of the battery.

(c) Use the graph to determine the internal resistance of the battery.

(d) What voltage would the battery read if it were not hooked up to an external circuit?

19. Students are using a variable power supply to quickly increase the voltage across a resistor. They measure the
current and the time the power supply is on. The following table of data is developed:

TABLE 14.4:

Time(sec) Voltage (v) Current (a)
0 0 0
2 10 1.0
4 20 2.0
6 30 3.0
8 40 3.6
10 50 3.8
12 60 3.5
14 70 3.1
16 80 2.7
18 90 2.0

(a) Graph voltage vs. current

(b) Explain the probable cause of the anomalous data after 8 seconds

(c) Determine the likely value of the resistor and explain how you used the data to support this determination.

(d) Graph power vs. time

(e) Determine the total energy dissipation during the 18 seconds.

20. You are given the following three devices and a power supply of exactly 120 v. ∗ Device X is rated at 60 V
and 0.5 A∗ Device Y is rated at 15 w and 0.5 A∗ Device Z is rated at 120 V and 1800 w Design a circuit that
obeys the following rules: you may only use the power supply given, one sample of each device, and an extra,
single resistor of any value (you choose). Also, each device must be run at their rated values.

21. Given three resistors, 200 Ω,300 Ω and 600 Ω and a 120 V power source connect them in a way to heat a
container of water as rapidly as possible.

a. Show the circuit diagram
b. How many joules of heat are developed after 5 minutes?

22. Construct a circuit using the following devices: a 120 V power source. Two 9 Ω resistors, device A rated at
1 A, 6 V; device B rated at 2 A, 60 V; device C rated at 225 w, 3 A; device D rated at 15 w, 15 V.

23. You have a battery with an emf of 12 V and an internal resistance of 1.00 Ω. Some 2.00 A are drawn from the
external circuit.
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a. What is the terminal voltage
b. The external circuit consists of device X , 0.5 A and 6 V; device Y , 0.5 A and 10 V, and two resistors.

Show how this circuit is connected.
c. Determine the value of the two resistors.

24. Students use a variable power supply an ammeter and three voltmeters to measure the voltage drops across
three unknown resistors. The power supply is slowly cranked up and the following table of data is developed:

TABLE 14.5:

Current (ma) Voltage R1 (v) Voltage R2 (v) Voltage R3 (v)
100 2.1 3.6 5.1
150 3.0 5.0 7.7
200 3.9 7.1 10.0
250 5.0 8.9 12.7
300 6.2 10.8 15.0
350 7.1 12.7 18.0
400 7.9 14.3 20.0
450 9.0 16.0 22.0
500 10.2 18.0 25.0
600 12.5 21.0 31.0
700 14.0 25.0 36.0

(a) Draw a circuit diagram, showing the ammeter and voltmeter connections.

(b) Graph the above data with voltage on the vertical axis.

(c) Use the slope of the best-fit straight line to determine the values of the three resistors.

(d) Quantitatively discuss the confidence you have in the results

(e) What experimental errors are most likely might have contributed to any inaccuracies.

25. Design a parallel plate capacitor with a capacitance of 100 mF. You can select any area, plate separation, and
dielectric substance that you wish.

26. You have a 5µF capacitor.

a. How much voltage would you have to apply to charge the capacitor with 200 C of charge?
b. Once you have finished, how much potential energy are you storing here?
c. If all this energy could be harnessed to lift you up into the air, how high would you be lifted?

27. Show, by means of a sketch illustrating the charge distribution, that two identical parallel-plate capacitors
wired in parallel act exactly the same as a single capacitor with twice the area.

28. A certain capacitor can store 5 C of charge if you apply a voltage of 10 V.

a. How many volts would you have to apply to store 50 C of charge in the same capacitor?
b. Why is it harder to store more charge?

29. A certain capacitor can store 500 J of energy (by storing charge) if you apply a voltage of 15 V. How many
volts would you have to apply to store 1000 J of energy in the same capacitor? (Important: why isn’t the
answer to this just 30 V?)

30. Marciel, a bicycling physicist, wishes to harvest some of the energy he puts into turning the pedals of his bike
and store this energy in a capacitor. Then, when he stops at a stop light, the charge from this capacitor can flow
out and run his bicycle headlight. He is able to generate 18 V of electric potential, on average, by pedaling
(and using magnetic induction).

a. If Mars wants to provide 0.5 A of current for 60 seconds at a stop light, how big a 18 V capacitor should
he buy (i.e. how many farads)?
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b. How big a resistor should he pass the current through so the RC time is three minutes?

31. Given a capacitor with 1 cm between the plates a field of 20,000 N/C is established between the plates.

a. What is the voltage across the capacitor?
b. If the charge on the plates is 1µC, what is the capacitance of the capacitor?
c. If two identical capacitors of this capacitance are connected in series what it the total capacitance?
d. Consider the capacitor connected in the following circuit at point B with two switches S and T , a 20Ω

resistor and a 120 V power source:

i. Calculate the current through and the voltage across the resistor if S is open and T is closed ii. Repeat if S
is closed and T is open Figure for Problems 32-34:

32. Consider the figure above with switch, S, initially open and the power supply set to 24 V:

a. What is the voltage drop across the 20Ω resistor?
b. What current flows thru the 60Ω resistor?
c. What is the voltage drop across the 20 microfarad capacitor?
d. What is the charge on the capacitor?
e. How much energy is stored in that capacitor?
f. Find the capacitance of capacitors B, C, and D if compared to the 20µF capacitor where. . .

(i). B has twice the plate area and half the plate separation (ii). C has twice the plate area and the same plate
separation (iii). D has three times the plate area and half the plate separation

33. Now the switch in the previous problem is closed.

a. What is the total capacitance of branch II?
b. What is the total capacitance of branches I, II, and III taken together?
c. What is the voltage drop across capacitor B?

34. Reopen the switch in the previous problem and look at the 20µF capacitor. It has a plate separation of 2.0mm.

a. What is the magnitude and direction of the electric field?
b. If an electron is released in the center to traverse the capacitor and given a speed 2/3 the speed of light

parallel to the plates , what is the magnitude of the force on that electron?
c. What would be its acceleration in the direction perpendicular to its motion?
d. If the plates are 1.0 cm long, how much time would it take to traverse the plate?
e. What displacement toward the plates would the electron undergo?
f. With what angle with respect to the direction of motion does the electron leave the plate?

35. Design a circuit that uses capacitors, switches, voltage sources, and light bulbs that will allow the interior
lights of your car to dim slowly once you get out.

36. Design a circuit that would allow you to determine the capacitance of an unknown capacitor.
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37. The voltage source in the circuit below provides 10 V. The resistor is 200Ω and the capacitor has a value of
50µF. What is the voltage across the capacitor after the circuit has been hooked up for a long time?

38. A simple circuit consisting of a 39µF and a 10kΩ resistor. A switch is flipped connecting the circuit to a 12 V
battery.

a. How long until the capacitor has 2/3 of the total charge across it?
b. How long until the capacitor has 99% of the total charge across it?
c. What is the total charge possible on the capacitor?
d. Will it ever reach the full charge in part c.?
e. Derive the formula for V(t) across the capacitor.
f. Draw the graph of V vs. t for the capacitor.
g. Draw the graph of V vs. t for the resistor.

39. If you have a 39µF capacitor and want a time constant of 5 seconds, what resistor value is needed?

Answers to Selected Problems

1. a. 4.5C b. 2.8×1019 electrons
2. a. 0.11 A b. 1.0 W c. 2.5×1021 electrons d. 3636 W
3. a. 192 Ω b. 0.42 W
4. a. 5.4 mV b. 1.4×10−8 A c. 7.3×10−11 W, not a lot d. 2.6×10−7 J
5. left = brighter, right = longer
6. a. 224 V b. 448 W c. 400 W by 100 Ω and 48 W by 12 Ω

7. b. 8.3 W
8. 0.5A
9. .

10. 0.8A and the 50 Ω on the left
11. a. 0.94 A b. 112 W c. 0.35 A d. 0.94 A e. 50,45,75 Ω f. both 50 Ω resistors are brightest, then 45 Ω, then

75 Ω

12. a. 0.76 A b. 7.0 W
13. b. 1000 W
14. .
15. a. 9.1 Ω b 29.1 Ω c. 10.8 Ω d.26.8 Ω e. 1.8A f. 21.5V g. 19.4V h. 6.1V i. 0.24A j. 16 kW
16. a. 3.66 Ω b. 0.36A c. 1.32 V
17. .
18. .
19. .
20. .
21. .
22. .
23. .
24. .
25. .
26. .
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27. .
28. .
29. .
30. .
31. .
32. a. 6V b. 0.3A c. 18V d. 3.6×10−4C e. 3.2×10−3J f. i) 80µF ii) 40µF iii) 120µF
33. a. 26.7µF b. 166.7µF
34. a. 19.0×103 N/C b. 1.4×10−15 N c. 1.6×1015 m/s2 d. 3.3×10−11 s e. 8.9×10−7 m f. 5.1×10−30

35. .
36. .
37. a. 10V
38. a. 0.43 seconds b. 1.8 seconds c. 4.7×10−4C d. No, it will asymptotically approach it. e. The graph is same

shape as the Q(t) graph. It will rise rapidly and then tail off asymptotically towards 12 V. f. The voltage across
the resistor is 12 V minus the voltage across the capacitor. Thus, it exponentially decreases approaching the
asymptote of 0 V.

39. about 128kΩ
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15.1 The Big Idea

For static electric charges, the electromagnetic force is manifested by the Coulomb electric force alone. If charges are
moving, an additional force emerges, called magnetism. The 19th century realization that electricity and magnetism
are dual aspects of the same force completely changed our understanding of the world we live in. As with electricity,
we use a field formulation to keep track of magnetic forces. Magnetic fields are usually denoted by the letter ~B and
are measured in Teslas, in honor of the Serbian physicist Nikola Tesla; like electric fields, they are vector fields that
contain energy, unlike electric fields, they have three dimensional properties and require some special vector rules to
understand.

Insights due to Ampere, Gauss, and Maxwell led to the understanding that moving charges — electric currents —
create magnetic fields. Varying magnetic fields create electric fields. Thus a loop of wire in a changing magnetic
field will have current induced in it. This is called electromagnetic induction.
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15.2 Sources of Magnetic Fields

In the electricity chapter, we learned that static electric fields have, as their source, some arrangement of charges.
On the other hand, there are no sources of magnetic charge: every magnet, no matter how small, has a ’north’
and ’south’ pole. Nonetheless, there exist ’magnetic materials’ that create fields and experience forces from other
magnetic materials. In this chapter, we study magnetic fields produced by two different phenomena.

Permanent Magnets

Permanent magnets (like refrigerator magnets) consist of atoms, such as iron, for which the magnetic moments
(roughly electron spin) of the electrons are “lined up” all across the atom. This means that their magnetic fields add
up, rather than canceling each other out. The net effect is noticeable because so many atoms have lined up. The
magnetic field of such a magnet always points from the north pole to the south. The magnetic field of a bar magnet,
for example, is illustrated below:

If we were to cut the magnet above in half, it would still have north and south poles; the resulting magnetic field
would be qualitatively the same as the one above (but weaker).

Charged Particles in Motion (Wires)

Charged particles in motion also generate magnetic fields. The most frequently used example is a current carrying
wire, since current is literally moving charged particles. The magnitude of a field generated by a wire depends on
distance to the wire and strength of the current (I) :

Bwire =
µ0I
2πr

[1] Magnetic field at a distance r from a current-carrying wire

Where µ0 = 4π×10−7 Tm/A [2] Permeability of Vacuum (approximately same for air also)

Meanwhile, its direction can be found using the so called first right hand rule: point your thumb in the direction of
the current. Then, curl your fingers around the wire. The direction your fingers will point in the same direction as
the field. Be sure to use your right hand!
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Sometimes, it is necessary to represent such three dimensional fields on a two dimensional sheet of paper. The
following example illustrates how this is done.

In the example above, a current is running along a wire towards the top of your page. The magnetic field is circling
the wire in loops that are pierced through the center by the current. Where these loops intersect this piece of paper,
we use the symbol

⊙
to represent where the magnetic field is coming out of the page and the symbol

⊗
to represent

where the magnetic field is going into the page. This convention can be used for all vector quantities: fields, forces,
velocities, etc.
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15.3 Effects of Magnetic Fields

Force on a Charged Particle

As moving charges create magnetic fields, so they experience forces from magnetic fields generated by other
materials. The magnitude of the force experienced by a particle traveling in a magnetic field depends on the charge
of the particle (q), the velocity of the particle (v), the strength of the field (B), and, importantly, the angle between
their relative directions (θ):

FB = qvBsinθ [3] Force on a Charged Particle

There is a second right hand rule that will show the direction of the force on a positive charge in a magnetic field:
point your index finger along the direction of the particle’s velocity . If your middle finger points along the magnetic
field, your thumb will point in the direction of the force. NOTE: For negative charge reverse the direction of the
force (or use your left hand)

For instance, if a positively charged particle is moving to the right, and it enters a magnetic field pointing towards
the top of your page, it feels a force going out of the page, while if a positively charged particle is moving to the left,
and it enters a magnetic field pointing towards the top of your page, it feels a force going into the page:
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Example 1: Find the Magnetic Field

Question: An electron is moving to the east at a speed of 1.8× 106m/s. It feels a force in the upward direction
with a magnitude of 2.2?10−12N. What is the magnitude and direction of the magnetic field this electron just passed
through?

Answer: There are two parts to this question, the magnitude of the electric field and the direction. We will first focus
on the magnitude.

To find the magnitude we will use the equation

FB = qvBsinθ

We were given the force of the magnetic field (2.2?10−12N) and the velocity that the electron is traveling (1.8×
106m/s). We also know the charge of the electron (1.6× 10−19C). Also, because the electron’s velocity is
perpendicular to the field, we do not have to deal with sinθ because sinθ of 90 degrees is 1. Therefore all we
have to do is solve for B and plug in the known values to get the answer.

FB = qvBsinθ

Solving for B:

B =
FB

qvsinθ

Now, plugging the known values we have

B =
FB

qvsinθ
=

2.2?10−12N
1.6×10−19C×1.8×106m/s×1

= 7.6T

Now we will find the direction of the field. We know the direction of the velocity (east) and the direction of the force
due to the magnetic field (up, out of the page). Therefore we can use the second right hand rule (we will use the left
hand, since an electron’s charge is negative). Point the pointer finger to the right to represent the velocity and the
thumb up to represent the force. This forces the middle finger, which represents the direction of the magnetic field,
to point south. Alternatively, we could recognize that this situation is illustrated for a positive particle in the right
half of the drawing above; for a negative particle to experience the same force, the field has to point in the opposite
direction: south.

Example 2: Circular Motion in Magnetic Fields

Consider the following problem: a positively charged particle with an initial velocity of ~v1, charge q and mass m
traveling in the plane of this page enters a region with a constant magnetic field ~B pointing into the page. We are
interested in finding the trajectory of this particle.
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Since the force on a charged particle in a magnetic field is always perpendicular to both its velocity vector and the
field vector (check this using the second right hand rule above), a constant magnetic field will provide a centripetal
force — that is, a constant force that is always directed perpendicular to the direction of motion. Two such
force/velocity combinations are illustrated above. According to our study of rotational motion, this implies that
as long as the particle does not leave the region of the magnetic field, it will travel in a circle. To find the radius of
the circle, we set the magnitude of the centripetal force equal to the magnitude of the magnetic force and solve for r:

Fc =
mv2

r
= FB = qvBsinθ = qvB

Therefore,

r =
mv2

qvB

In the examples above, θ was conveniently 90 degrees, which made sinθ = 1. But that does not really matter; in
a constant magnetic fields a different θ will simply decrease the force by a constant factor and will not change the
qualitative behavior of the particle, since θ cannot change due to such a magnetic force. (Why? Hint: what is the
force perpendicular to? Read the paragraph above.)

Force on a Wire

Since a wire is nothing but a collection of moving charges, the force it will experience in a magnetic field will simply
be the vector sum of the forces on the individual charges. If the wire is straight — that is, all the charges are moving
in the same direction — these forces will all point in the same direction, and so will their sum. Then, the direction
of the force can be found using the second right hand rule, while its magnitude will depend on the length of the wire
(denoted L), the strength of the current, the strength of the field, and the angle between their directions:

Fwire = LIBsin(θ) [4] Force on a Current Carrying Wire

Two current-carrying wires next to each other each generate magnetic fields and therefore exert forces on each other:
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By plugging equation [1] into equation [4], one can find the exact formula for this force (left to the reader — make
sure to remember that the two wires can have different currents).

Electromagnetic Induction

Changing magnetic fields passing through a loop of wire generate currents in that wire; this is how electric power
generators work. Likewise, a changing current in a wire will create a changing magnetic field; this is how speakers
and electric motors work.

To understand induction, we need to introduce the concept of electromagnetic flux. If you have a closed, looped
wire of area A (measured in m2) and N loops, and you pass a magnetic field B through, the magnetic flux Φ is given
by the formula below. Again, the relative direction of the loops and the field matter; this relationship is preserved
by creating an ’area vector’: a vector whose magnitude is equal to the area of the loop and whose direction is
perpendicular to the plane of the loop. The directions’ influence can then be conveniently captured through a dot
product:

Φ = N~B ·~A [5] Electromagnetic Flux

The units of magnetic flux are T×m2, also known as Webers(Wb).

In the example above, there are four loops of wire (N = 4) and each has area πr2 (horizontally hashed). The magnetic
field is pointing at an angle θ to the area vector. If the magnetic field has magnitude B, the flux through the loops
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will equal 4cosθBπr2. Think of the magnetic flux as the part of the “bundle” of magnetic field lines “held” by the
loop that points along the area vector.

If the magnetic flux through a loop or loops changes, electrons in the wire will feel a force, and this will generate a
current. The induced voltage (also called electromotive force, or emf) that they feel is equal to the change in flux
4Φ divided by the amount of time4t that change took. This relationship is called Faraday’s Law of Induction:

em f =−∆Φ

∆t
[6] Faraday’s Law of Induction

The direction of the induced current is determined as follows: the current will flow so as to generate a magnetic
field that opposes the change in flux. This is called Lenz’s Law. Note that the electromotive force described above
is not actually a force, since it is measured in Volts and acts like an induced potential difference. It was originally
called that since it caused charged particles to move — hence electromotive — and the name stuck (it’s somewhat
analogous to calling an increase in a particle’s gravitational potential energy difference a gravitomotive force).

Since only a changing flux can produce an induced potential difference, one or more of the variables in equation [5]
must be changing if the ammeter in the picture above is to register any current. Specifically, the following can all
induce a current in the loops of wire:

• Changing the direction or magnitude of the magnetic field.
• Changing the loops’ orientation or area.
• Moving the loops out of the region with the magnetic field.
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15.4 Magnetism Problem Set

1. Can you set a resting electron into motion with a stationary magnetic field? With an electric field? Explain.
2. How is electrical energy produced in a dam using a hydroelectric generator? Explain in a short essay involving

as many different ideas from physics as you need.
3. A speaker consists of a diaphragm (a flat plate), which is attached to a magnet. A coil of wire surrounds the

magnet. How can an electrical current be transformed into sound? Why is a coil better than a single loop? If
you want to make music, what should you do to the current?

4. For each of the arrangements of velocity v and magnetic field B below, determine the direction of the force.
Assume the moving particle has a positive charge.

5. Sketch the magnetic field lines for the horseshoe magnet shown here. Then, show the direction in which the
two compasses (shown as circles) should point considering their positions. In other words, draw an arrow in
the compass that represents North in relation to the compass magnet.

6. As an electron that is traveling in the positive x−direction encounters a magnetic field, it begins to turn in the
upward direction (positive y−direction). What is the direction of the magnetic field?

a. −direction
b. +direction (towards the top of the page)
c. −direction (i.e. into the page)
d. +direction (i.e. out of the page)
e. none of the above

7. A positively charged hydrogen ion turns upward as it enters a magnetic field that points into the page. What
direction was the ion going before it entered the field?

a. −direction
b. +direction
c. −direction (towards the bottom of the page)
d. +direction (i.e. out of the page)
e. none of the above

8. An electron is moving to the east at a speed of 1.8× 106 m/s. It feels a force in the upward direction with
a magnitude of 2.2× 10−12 N. What is the magnitude and direction of the magnetic field this electron just
passed through?

9. A vertical wire, with a current of 6.0 A going towards the ground, is immersed in a magnetic field of 5.0 T
pointing to the right. What is the value and direction of the force on the wire? The length of the wire is 2.0 m.
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10. A futuristic magneto-car uses the interaction between current flowing across the magneto car and magnetic
fields to propel itself forward. The device consists of two fixed metal tracks and a freely moving metal car
(see illustration above). A magnetic field is pointing downward with respect to the car, and has the strength of
5.00 T. The car is 4.70 m wide and has 800 A of current flowing through it. The arrows indicate the direction
of the current flow.

a. Find the direction and magnitude of the force on the car.
b. If the car has a mass of 2050 kg, what is its velocity after 10 s, assuming it starts at rest?
c. If you want double the force for the same magnetic field, how should the current change?

11. A horizontal wire carries a current of 48 A towards the east. A second wire with mass 0.05 kg runs parallel to
the first, but lies 15 cm below it. This second wire is held in suspension by the magnetic field of the first wire
above it. If each wire has a length of half a meter, what is the magnitude and direction of the current in the
lower wire?

12. Protons with momentum 5.1×10−20 kg · m/s are magnetically steered clockwise in a circular path. The path
is 2.0 km in diameter. (This takes place at the Dann International Accelerator Laboratory, to be built in 2057
in San Francisco.) Find the magnitude and direction of the magnetic field acting on the protons.

13. A bolt of lightening strikes the ground 200 m away from a 100−turn coil (see above). If the current in the
lightening bolt falls from 6.0× 106 A to 0.0 A in 10 ms, what is the average voltage, ε, induced in the coil?
What is the direction of the induced current in the coil? (Is it clockwise or counterclockwise?) Assume that
the distance to the center of the coil determines the average magnetic induction at the coil’s position. Treat the
lightning bolt as a vertical wire with the current flowing toward the ground.

14. A coil of wire with 10 loops and a radius of 0.2 m is sitting on the lab bench with an electro-magnet facing
into the loop. For the purposes of your sketch, assume the magnetic field from the electromagnet is pointing
out of the page. In 0.035 s, the magnetic field drops from 0.42 T to 0 T.

a. What is the voltage induced in the coil of wire?
b. Sketch the direction of the current flowing in the loop as the magnetic field is turned off. (Answer as if

you are looking down at the loop).
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15. A wire has 2 A of current flowing in the upward direction.

a. What is the value of the magnetic field 2 cm away from the wire?
b. Sketch the direction of the magnetic field lines in the picture to the right.
c. If we turn on a magnetic field of 1.4 T, pointing to the right, what is the value and direction of the force

per meter acting on the wire of current?
d. Instead of turning on a magnetic field, we decide to add a loop of wire (with radius 1 cm) with its center

2 cm from the original wire. If we then increase the current in the straight wire by 3 A per second, what
is the direction of the induced current flow in the loop of wire?

16. An electron is accelerated from rest through a potential difference of 1.67×105 volts. It then enters a region
traveling perpendicular to a magnetic field of 0.25 T.

a. Calculate the velocity of the electron.
b. Calculate the magnitude of the magnetic force on the electron.
c. Calculate the radius of the circle of the electron’s path in the region of the magnetic field

17. A beam of charged particles travel in a straight line through mutually perpendicular electric and magnetic
fields. One of the particles has a charge, q; the magnetic field is B and the electric field is E. Find the velocity
of the particle.

18. Two long thin wires are on the same plane but perpendicular to each other. The wire on the y−axis carries a
current of 6.0 A in the −y direction. The wire on the x−axis carries a current of 2.0 A in the +x direction.
Point, P has the co-ordinates of (2.0,2,0) in meters. A charged particle moves in a direction of 45o away from
the origin at point, P, with a velocity of 1.0×107 m/s.

a. Find the magnitude and direction of the magnetic field at point, P.
b. If there is a magnetic force of 1.0×10−6 N on the particle determine its charge.
c. Determine the magnitude of an electric field that will cancel the magnetic force on the particle.

19. A rectangular loop of wire 8.0 m long and 1.0 m wide has a resistor of 5.0 Ω on the 1.0 side and moves out of
a 0.40 T magnetic field at a speed of 2.0 m/s in the direction of the 8.0 m side.

a. Determine the induced voltage in the loop.
b. Determine the direction of current.
c. What would be the net force needed to keep the loop at a steady velocity?
d. What is the electric field across the .50 m long resistor?
e. What is the power dissipated in the resistor?

20. A positron (same mass, opposite charge as an electron) is accelerated through 35,000 volts and enters the
center of a 1.00 cm long and 1.00 mm wide capacitor, which is charged to 400 volts. A magnetic filed is
applied to keep the positron in a straight line in the capacitor. The same field is applied to the region (region
II) the positron enters after the capacitor.

a. What is the speed of the positron as it enters the capacitor?
b. Show all forces on the positron.
c. Prove that the force of gravity can be safely ignored in this problem.
d. Calculate the magnitude and direction of the magnetic field necessary.
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e. Show the path and calculate the radius of the positron in region II.
f. Now the magnetic field is removed; calculate the acceleration of the positron away from the center.
g. Calculate the angle away from the center with which it would enter region II if the magnetic field were

to be removed.

21. A small rectangular loop of wire 2.00 m by 3.00 m moves with a velocity of 80.0 m/s in a non-uniform field
that diminishes in the direction of motion uniformly by .0400 T/m. Calculate the induced emf in the loop.
What would be the direction of current?

22. An electron is accelerated through 20,000 V and moves along the positive x−axis through a plate 1.00 cm
wide and 2.00 cm long. A magnetic field of 0.020 T is applied in the −z direction.

a. Calculate the velocity with which the electron enters the plate.
b. Calculate the magnitude and direction of the magnetic force on the electron.
c. Calculate the acceleration of the electron.
d. Calculate the deviation in the y direction of the electron form the center.
e. Calculate the electric field necessary to keep the electron on a straight path.
f. Calculate the necessary voltage that must be applied to the plate.

23. A long straight wire is on the x−axis and has a current of 12 A in the−x direction. A point P, is located 2.0 m
above the wire on the y−axis.

a. What is the magnitude and direction of the magnetic field at P.
b. If an electron moves through P in the−x direction at a speed of 8.0×107 m/s what is the magnitude and

direction of the force on the electron?
c. What would be the magnitude and direction of an electric field to be applied at P that would counteract

the magnetic force on the electron?

Answers to Selected Problems

1. No: if v = 0 then F = 0; yes: F = qE
2. .
3. .
4. a. Into the page b. Down the page c. Right
5. Both pointing away from north
6. .
7. .
8. 7.6 T, south
9. Down the page; 60 N

10. a. To the right, 1.88×104 N b. 91.7 m/s c. It should be doubled
11. East 1.5×104 A
12. 0.00016 T; if CCW motion, B is pointed into the ground.
13. 1.2×105 V, counterclockwise
14. a. 15 V b. Counter-clockwise
15. a. 2×10−5 T b. Into the page c. 2.8 N/m d. CW
16. a. 2.42×108 m/s b. 9.69×10−12 N c. .0055 m
17. E/B
18. a. 8×10−7 T b. 1.3×10−6 C
19. a. 0.8 V b. CCW c. .064 N d. .16 N/C e. .13 w
20. a. 1.11×108 m/s b. 9.1×10−30 N << 6.4×10−14 N d. .00364 T e. .173 m f. 7.03×1016 m/s2 g. 3.27◦

21. 19.2 V
22. a.8.39×107 m/s b. 2.68×10−13 N,−y c. 2.95×1017 m/s2 d. .00838 m e. 1.68×106 N/C f. 16,800 V
23. a. 1.2×10−6 T,+z b. 1.5×10−17 N,−y c. 96 N/C,−y
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16.1 The Big Idea

Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone,
and iPod depend on circuit elements called diodes, inductors, transistors, and operational amplifiers, as well as on
other chips. In particular the invention of the transistor made the small size of modern devices possible. Transistors
and op amps are known as active circuit elements. An active circuit element needs an external source of power to
operate. This differentiates them from diodes, capacitors, inductors and resistors, which are passive elements.

Key Concepts

• Inductors are made from coiled wires, normally wrapped around ferromagnetic material and operate accord-
ing to the principles of magnetic induction presented in Magnetism. Inductors generate a back-emf. Back-
emf is essentially an induced negative voltage which opposes changes in current. The amount of back-emf
generated is proportional to how quickly the current changes. They can be thought of as automatic flow
regulators that oppose any change in current. Thus electrical engineers call them chokes.

In a circuit diagram, an inductor looks like a coil. The resistance R and capacitance C of an inductor are very close
to zero. When analyzing a circuit diagram, assume R and C are precisely zero.

• Diodes are passive circuit elements that act like one-way gates. Diodes allow current to flow one way, but not
the other. For example, a diode that “turns on” at 0.6 V acts as follows: if the voltage drop across the diode is
less than 0.6 V, no current will flow. Above 0.6 V, current flows with essentially no resistance. If the voltage
drop is negative (and not extremely large), no current will flow.

Diodes have an arrow showing the direction of the flow.

• Transistors are active circuit elements that act like control gates for the flow of current. Although there are
many types of transistors, let’s consider just one kind for now. This type of transistor has three electrical leads:
the base, the emitter, and the collector.

The voltage applied to the base controls the amount of current which flows from the emitter to the collector.

• For example, if the base voltage is more than 0.8 V above the collector voltage, then current can freely flow
from the emitter to the collector, as if it were just a wire. If the base voltage is less than 0.8 V above the
collector voltage, then current does not flow from the emitter to the collector. Thus the transistor acts as a
switch. (This 0.8 V is known as a “diode drop” and varies from transistor to transistor.)
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• Transistors have an infinite output resistance.. If you measure the resistance between the collector and the
base (or between the emitter and the base), it will be extremely high. Essentially no current flows into the base
from either the collector or the emitter; any current, if it flows, flows from the emitter to the collector..

• Transistors are used in amplifier circuits, which take an input voltage and magnify it by a large factor.
Amplifiers typically run on the principle of positive and negative feedback. Feedback occurs when a small
portion of an output voltage is used to influence the input voltage.

TABLE 16.1:

Circuit element Symbol Electrical symbol Unit Everyday device
Voltage Source ?V Volts (V ) Batteries, electrical

outlets, power sta-
tions

Resistor R Ohm (Ω) Light bulbs, toast-
ers, hair dryers

Capacitor C Farad (F) Computer
keyboards, timers

Inductor L Henry (H) Electronic chokes,
AC transformers

Diode varies by type none Light-emitting
diodes (LEDs)

Transistor varies by type none Computer chips,
amplifiers

• An operational amplifier or op-amp is an active circuit element that performs a specific function. The most
common op-amp has five leads: two input leads, one output lead, and two fixed-voltage leads.
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The job of an op-amp is to use the voltage it is supplied to adjust its output voltage. The op-amp will adjust its output
voltage until the two input voltages are brought closer together. In other words, the output voltage will change as
it needs to until VA−VB = 0. This won’t happen unless the output voltage is somehow “fed back” into one of the
inputs

• Digital circuits only care about two voltages: for example, +5 V (known as “on”) and 0 V (known as “off”).
• Logic devices, which are active circuit elements, interpret voltages according to a simple set of mathematical

rules known as Boolean logic. The most basic logic devices are the AND, OR, and NOT gates:

For an AND gate, the output will always be at an electric potential of 0 V (off) unless both the inputs are at 5 V (on),
in which case the output will be at 5 V (on) as well.

For an OR gate, the output will always be at an electric potential of 0 V (off) unless either of the inputs are at 5 V
(on), in which case the output will be at 5 V (on) as well.

For a NOT gate, the output will always be the opposite of the input. Thus, if the input is 5 V (on), the output will be
0 V (off) and vice-versa.

• Alternating current changes direction of current flow. The frequency is the number of times the current
reverses direction in a second. Household AC is 60 Hz. In AC circuits the current is impeded but not stopped
by elements like capacitors and inductors.

• Capacitive Reactance is a measure of how a capacitor impedes the current flow from a given voltage in an
AC circuit and is inversely proportional to capacitance. Inductive Reactance is a measure of how an inductor
in an AC circuit impedes the current flow from a given voltage and is directly proportional to inductance.

• The total impedance of an AC circuit depends on resitance, capacitive reactance and inductive reactance.

• If the capacitive reactance and inductive reactance are both zero or unequal the voltage and current are out of
phase. That is they peak at different times in the cycle. The phase angle measures the lag or lead of current
over voltage.
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16.2 Key Equations



E = −L∆I
∆t Emf across an inductor with inductance L

L = µ0N2A
I Inductance of a solenoid withNturns, area A, in Henrys (H)

XL = 2π fC Inductive reactance for AC of frequency f
XC = 1

XL
Capacitive reactance for AC of frequency f

Z =
√

R2 +(XL−XC)2 Impedance of an RC circuit (Pythagorean Theorem)

tanφ = XL−XC
R Phase angle between peak current and voltage
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16.3 Examples

Example 1

Question: Consider the op-amp circuit diagram shown here. Note the fixed-voltage leads are omitted for clarity.
(This is typical.)

Let’s begin with an input voltage at point A of 0.5V. a) If the op-amp is “doing its job,” what is the electric
potential at point B? b) What current is flowing through the 10Ω resistor? c) What current must be flowing
through the 100Ω resistor? d) What must the output voltage be? Now let’s adjust the input voltage at point A
to 0.75V. e) What is the output voltage now? f) By what factor is the op-amp amplifying the input voltage?

Answer:

a) The op-amp is supposed to make the two input voltages as close to equal as possible, or in other words,

VA−VB = 0

Therefore if the input voltage at point A is .5V, then the input voltage at point B should also be .5V.

b) We will use Ohm’s Law to find the current going through the 10Ω resistor.

V = IR⇒ V
R
= I⇒ I =

.5V
10Ω

= .05A

c) Recall that no current ever flows into an op-amp. Therefore, the current must be the same as the current running
through the 10Ω resistor, which is .05A.

d) We will again use Ohm’s law. First we must find the total resistance and then we can plug in the known values to
solve for the voltage.

Rtotal = R1 +R2 = 10Ω+100Ω = 110Ω

V = IR = .05A×110Ω = 5.5V
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e) We now want to find the output voltage given an input voltage of 0.75V at point A. Though the numbers are
different, it is the same process as solving it when the input voltage was 0.5V. First we must find the current and the
total resistance. We then use these values to solve for the output voltage.

V = IR⇒ V
R
= I⇒ I =

.75V
10Ω

= .075A

The total resistance remains unchanged.

Rtotal = R1 +R2 = 10Ω+100Ω = 110Ω

So the new output voltage is

V = IR = .075A×110Ω = 8.25V

f) This is a simple division problem. The output voltage divided by the input voltage will give us the factor by which
the output voltage is greater than the input voltage.

8.25V
.75V

= 11
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16.4 Advanced Topics Problem Set

1. You purchase a circular solenoid with 100 turns, a radius of 0.5 cm, and a length of 2.0 cm.

a. Calculate the inductance of your solenoid in Henrys.
b. A current of 0.5 A is passing through your solenoid. The current is turned down to zero over the course

of 0.25 seconds. What voltage is induced in the solenoid?

2. What is the voltage drop across an inductor if the current passing through it is not changing with time? Does
your answer depend on the physical makeup of the inductor? Explain.

3. Consider the transistor circuit diagram shown here. The resistor is a light bulb that shines when current passes
through it.

a. If the base is raised to a voltage of 5 V, will the light bulb shine?
b. If the base is lowered to a voltage of 0 V, will the light bulb shine?
c. Why are transistors sometimes called electronic switches?

4. Consider the op-amp circuit diagram shown here. Note the fixed-voltage leads are omitted for clarity. (This
is typical.) Let’s begin with an input voltage at point A of 0.5 V. (a) If the op-amp is “doing its job,” what
is the electric potential at point B? (b) What current is flowing through the 10 Ω resistor? (c) Recall that no
current ever flows into an op-amp. What current must be flowing through the 100 Ω resistor? (d) What must
the output voltage be? Now let’s adjust the input voltage at point A to 0.75 V. (e) What is the output voltage
now? (f) By what factor is the op-amp amplifying the input voltage? (g) What are some practical applications
for such a device?
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5. Consider the logic circuit shown here.

a. If A, B, and C are all off, what is the state of D?
b. If A, B, and C are all on, what is the state of D?
c. Fill out the entire “logic table” for this circuit.

TABLE 16.2:

State of A State of B State of C State of D
on on on
on on off
on off on
on off off
off on on
off off on
off on off
off off off

6. A series circuit contains the following elements: a 125 Ω resistor, a 175 mH inductor, two 30.0µF capacitors
and a 40.0µF capacitor. Voltage is provided by a 235 Vm generator operating at 75.0 Hz.

a. Draw a schematic diagram of the circuit.
b. Calculate the total capacitance of the circuit.
c. Calculate the capacitive reactance.
d. Calculate the impedance.
e. Calculate the peak current.
f. Calculate the phase angle.
g. Resonance occurs at the frequency when peak current is maximized. What is that frequency?

Answers to Selected Problems

1. 1. 4.9×10−5 H
2. −9.8×10−5 V

2. Zero

1. Yes
2. No
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3. Because they turn current flow on and off.

1. 0.5 V
2. 0.05 A
3. 0.05 A
4. 5.5 V
5. 8.25V
6. 11×

1. On
2. On
3. On,on,o f f ,on,o f f ,o f f ,on,on

3. (b) 10.9µ F (c) 195 Ω (d) 169 Ω (e) 1.39 A (f) −42◦ (g) 115Hz
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CHAPTER 17 Light Version 2
Chapter Outline

17.1 THE BIG IDEA
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17.1 The Big Idea

Light is a wave of changing electric and magnetic fields. Light waves are caused by disturbances in an electromag-
netic field, like the acceleration of charged particles (such as electrons). Light has a dual nature; at times, it acts like
waves, while at other times it acts like particles, called photons. Light travels through space at the maximum speed
allowed by the laws of physics, called the speed of light. Light has no mass, but it carries energy and momentum.
Fermat’s principle states that light will always take the path that takes the least amount of time (not distance).

Fermat’s Principle governs the paths light will take and explains the familiar phenomena of reflection, refraction,
diffraction, scattering and color absorption and dispersion. Light rarely travels in a straight line path. When photons
interact with electrons in matter, the time it takes for this interaction determines the path. For example, higher
frequency blue light is refracted more than red because blue interacts more frequently with electrons. Also, the path
of least time is achieved when blue light bends more than red light so that it gets out of the ’slow’ region faster.
Fermat’s Principle explains the many fascinating phenomena of light from rainbows to sunsets to the halos around
the moon.

Key Concepts

• When charged particles accelerate, changing electric and magnetic fields radiate outward. The traveling
electric and magnetic fields of an accelerating (often oscillating) charged particle are known as electromagnetic
radiation or light.

• The color of light that we observe is a measure of the frequency of the light: the smaller the frequency, the
redder the light.

• The spectrum of electromagnetic radiation can be roughly broken into the following ranges:

TABLE 17.1:

EM wave Wavelength range Comparison size
gamma-ray (γ− ray) 10−11 m and shorter atomic nucleus
x−ray 10−11 m−10−8 m hydrogen atom
ultraviolet (UV) 10−8 m−10−7 m small molecule
violet (visible) ∼ 4×10−7 m(400 nm)∗ typical molecule
blue (visible) ∼ 450 nm typical molecule
green (visible) ∼ 500 nm typical molecule
red (visible) ∼ 650 nm typical molecule
infrared (IR) 10−6 m−1 mm human hair
microwave 1 mm−10 cm human finger
radio Larger than 10 cm car antenna

• Light can have any wavelength. Our vision is restricted to a very narrow range of colors between red and
violet.

• Fermat’s Principle makes the angle of incident light equal to the angle of reflected light. This is the law of
reflection.

• When light travels from one type of material (like air) into another (like glass), its effective speed is reduced
due to interactions between photons and electrons. If the ray enters the material at an angle, Fermat’s Principle
dictates that the light will change the direction of its motion. One way to think about this is that light takes the

226

http://www.ck12.org


www.ck12.org Chapter 17. Light Version 2

path of least time to get from points A to point B, thus it takes a more direct path through ’slower’ mediums,
so it can get out of the slow part faster. Light does not always travel in a straight line, it travels on the path of
least time. This is called refraction.

• White light consists of a mixture of all the visible colors: red, orange, yellow, green, blue, indigo, and violet
(ROYGBIV). Our perception of the color black is tied to the absence of light.

• Different frequencies of light (and hence different colors in the visible spectrum) will travel at slightly different
speeds in materials, like glass, and thus have slightly different refracting angles. This phenomena gives rise to
rainbows.

• Our eyes include color-sensitive and brightness-sensitive cells. The three different color-sensitive cells (cones)
can have sensitivity in three colors: red, blue, and green. Our perception of other colors is made from the
relative amounts of each color that the cones register from light reflected from the object we are looking at.
Our brightness-sensitive cells work well in low light. This is why things look ’black and white’ at night.

• The chemical bonds in pigments and dyes – like those in a colorful shirt – absorb light at frequencies that
correspond to certain colors. When you shine white light on these pigments and dyes, some colors are absorbed
and some colors are reflected. We only see the colors objects reflect.

Color Addition

TABLE 17.2:

Red Green Blue Perceived color√ √ √
white
black√ √
magenta√ √
yellow√ √
cyan

Key Applications

• Total internal reflection occurs when light goes from a slow (high index of refraction) medium to a fast (low
index of refraction) medium. With total internal reflection, light refracts so much it actually refracts back into
the first medium. This is how fiber optic cables work: no light leaves the wire.

• Rayleigh scattering occurs when light interacts with our atmosphere. The shorter the wavelength of light, the
more strongly it is disturbed by collisions with atmospheric molecules. Accordingly, blue light from the Sun
is preferentially scattered by these collisions into our line of sight. This is why the sky appears blue.
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• Beautiful sunsets are another manifestation of Rayleigh scattering that occurs when light travels long distances
through the atmosphere. The blue light and some green is scattered away, making the sun appear red.

• Lenses, made from curved pieces of glass, focus or de-focus light as it passes through. Lenses that focus
light are called converging lenses, and these are the ones used to make telescopes and cameras. Lenses that
de-focus light are called diverging lenses.

• Lenses can be used to make visual representations, called images.

• Mirrors are made from highly reflective metal that is applied to a curved or flat piece of glass. Converging
mirrors can be used to focus light – headlights, telescopes, satellite TV receivers, and solar cookers all rely on
this principle. Like lenses, mirrors can create images.

• The focal length, f , of a lens or mirror is the distance from the surface of the lens or mirror to the place where
the light is focused. This is called the focal point or focus. For diverging lenses or mirrors, the focal length is
negative.

• When light rays converge in front of a mirror or behind a lens, a real image is formed. Real images are useful
in that you can place photographic film at the physical location of the real image, expose the film to the light,
and make a two-dimensional representation of the world, a photograph.
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• When light rays diverge in front of a mirror or behind a lens, a virtual image is formed. A virtual image is
a trick, like the person you see “behind” a mirror’s surface when you brush your teeth. Since virtual images
aren’t actually “anywhere,” you can’t place photographic film anywhere to capture them.

• Real images are upside-down, or inverted. You can make a real image of an object by putting it farther from
a mirror or lens than the focal length. Virtual images are typically right-side-up. You can make virtual images
by moving the mirror or lens closer to the object than the focal length.

• Waves are characterized by their ability to constructively and destructively interfere. Light waves which
interfere with themselves after interaction with a small aperture or target are said to diffract.

• Light creates interference patterns when passing through holes (“slits”) in an obstruction such as paper or the
surface of a CD, or when passing through a thin film such as soap.

Key Equations

λ f = c

The product of the wavelength λ of the light (in meters) and the frequency f of the light (in Hz, or 1/sec) is always
equal to a constant, namely the speed of light c = 300,000,000 m/s.

n =
c
u

The index of refraction, n, is the ratio of its speed (c) in a vacuum to the slower speed (u) it travels in a material. n
can depend slightly on wavelength.

ni sinθi = n f sinθ f

mλ = d sinθ
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Double slit interference maxima. m is the order of the interference maximum in question, d is the distance between
slits. and θ is the angular position of the maximum.

mλ = d sinθ

Single slit interference maxima. m and θ are defined as above and d is the width of the slit.

mλ = d sinθ

Diffraction grating interference maxima. m and θ are defined as above and d is the distance between the lines on the
grating.

mλ = 2nd

Thin film interference: n is the index of refraction of the film, d is the thickness of the film, and m is an integer.
In the film interference, there is a λ/2 delay (phase change) if the light is reflected from an object with an index of
refraction greater than that of the incident material.

1
f
=

1
d0

+
1
di

For lenses, the distance from the center of the lens to the focus is f . Focal lengths for foci behind the lens are positive
in sign. The distance from the center of the lens to the object in question is d0, where distances to the left of the
lens are positive in sign. The distance from the center of the lens to the image is di. This number is positive for real
images (formed to the right of the lens), and negative for virtual images (formed to the left of the lens). For mirrors,
the same equation holds! However, the object and image distances are both positive for real images formed to the
left of the mirror. For virtual images formed to the right of the mirror, the image distance is negative

M =
−di

d0

The size of an object’s image is larger (or smaller) than the object itself by its magnification, M. The level of
magnification is proportional to the ratio of di and do. An image that is double the size of the object would have
magnification M = 2.

R = 2 f

The radius of curvature of a mirror is twice its focal length
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Question: Nisha stands at the edge of an aquarium 3.0m deep. She shines a laser at a height of 1.7m that hits the
water of the pool 8.1m from the edge. Draw a diagram of this situation. Label all known lengths.

a) How far from the edge of the pool will the light hit bottom?

b) If her friend, Marc, were at the bottom and shined a light back, hitting the same spot as Nisha’s, how far from the
edge would he have to be so that the light never leaves the water?

Answer:

a) To solve for the distance from the edge we must first solve for the distance from the laser to the pool surface and
then add that to the distance from the pool surface to the bottom of the pool. We can find the distance from the laser
to the pool by using the Pythagorean Theorem.

a2 +b2 = c2⇒ b =
√

c2−a2 = 8.12m−1.72m = 7.9m

Now that we have the length from the laser to the pull all we need is the length from the surface of the pool to the
bottom of it.

To find this value we will use the equation

na× sinθa = nw× sinθw

Once we have solved for θw, we will be able to use trigonometry to solve for the distance from the surface of the
pool to the bottom of the pool. We know that na = 1.00029 and that nw = 1.33. So once we solve for θa, we can
solve for θw.

sin−1 1.7
8.1

= 12.1o

This is the complement of θa, so

90o−12.1o = 77.9o

Now we can solve for θw.

na× sinθa = nw× sinθw⇒ θw = sin−1(
na× sinθa

nw
) = sin−1(

1.00029× .98
1.33

) = 47.5o
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Now we can use trigonometry.

tanθ =
opposite
adjacent

⇒ opposite = adjacent× tanθ = 3m× tan47.5o = 3.3m

Now we simply need to add the two distances together to get our answer.

3.3m+7.9m = 11.2m

b) For the beam of light to never leave the water, sin−1θa = 90. For this to be true, θa = 1. So, we will use following
equation and then substitute 1 for θa. This will allow us to solve for θw which will, in turn, allow for us to solve for
James’ distance from the edge of the pool.

na× sinθa = nw× sinθw⇒ na×1 = nw× sinθw⇒ θw = sin−1(
na

nw
) = sin−1(

1.00029
1.33

) = 48.8o

Now we can use trigonometry to get our answer.

tanθ =
opposite
adjacent

⇒ opposite = adjacent× tanθ = 3m× tan48.8o = 3.4m

3.4m+7.9m = 11.3m

Light Problem Set

1. Which corresponds to light of longer wavelength, UV rays or IR rays?
2. Which corresponds to light of lower frequency, x−rays or millimeter-wavelength light?
3. Approximately how many blue wavelengths would fit end-to-end within a space of one millimeter?
4. Approximately how many short (“hard”) x−rays would fit end-to-end within the space of a single red wave-

length?
5. Calculate the frequency in Hz of a typical green photon emitted by the Sun. What is the physical interpretation

of this (very high) frequency? (That is, what is oscillating?)
6. FM radio stations list the frequency of the light they are emitting in MHz, or millions of cycles per second.

For instance, 90.3 FM would operate at a frequency of 90.3× 106 Hz. What is the wavelength of the radio-
frequency light emitted by this radio station? Compare this length to the size of your car’s antenna, and make
an argument as to why the length of a car’s antenna should be about the wavelength of the light you are
receiving.

7. Consult the color table for human perception under the ’Key Concepts’ section and answer the questions which
follow.

a. Your coat looks magenta in white light. What color does it appear in blue light? In green light?
b. Which secondary color would look black under a blue light bulb?
c. You look at a cyan-colored ribbon under white light. Which of the three primary colors is your eye not

detecting?

8. Consider the following table, which states the indices of refraction for a number of materials.

TABLE 17.3:

Material n
vacuum 1.00000
air 1.00029
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TABLE 17.3: (continued)

Material n
water 1.33
typical glass 1.52
cooking oil 1.53
heavy flint glass 1.65
sapphire 1.77
diamond 2.42

(a) For which of these materials is the speed of light slowest?

(b) Which two materials have the most similar indices of refraction?

(c) What is the speed of light in cooking oil?

9. A certain light wave has a frequency of 4.29×1014 Hz. What is the wavelength of this wave in empty space?
In water?

10. A light ray bounces off a fish in your aquarium. It travels through the water, into the glass side of the aquarium,
and then into air. Draw a sketch of the situation, being careful to indicate how the light will change directions
when it refracts at each interface. Include a brief discussion of why this occurs.

11. Why is the sky blue? Find a family member who doesn’t know why the sky is blue and explain it to them.
Ask them to write a short paragraph explaining the situation and include a sketch.

12. Describe the function of the dye in blue jeans. What does the dye do to each of the various colors of visible
light?

13. A light ray goes from the air into the water. If the angle of incidence is 34◦, what is the angle of refraction?
14. In the “disappearing test tube” demo, a test tube filled with vegetable oil vanishes when placed in a beaker full

of the same oil. How is this possible? Would a diamond tube filled with water and placed in water have the
same effect?

15. Imagine a thread of diamond wire immersed in water. Can such an object demonstrate total internal reflection?
If so, what is the critical angle? Draw a picture along with your calculations.

16. A light source sits in a tank of water, as shown.

a. If one of the light rays coming from inside the tank of water hits the surface at 35.0◦, as measured from
the normal to the surface, at what angle will it enter the air?

b. Now suppose the incident angle in the water is 80◦ as measured from the normal. What is the refracted
angle? What problem arises?
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c. Find the critical angle for the water-air interface. This is the incident angle that corresponds to the largest
possible refracted angle, 90◦.

17. Nisha stands at the edge of an aquarium 3.0 m deep. She shines a laser at a height of 1.7 m that hits the water
of the pool 8.1 m from the edge.

a. Draw a diagram of this situation. Label all known lengths.
b. How far from the edge of the pool will the light hit bottom?
c. If her friend, James, were at the bottom and shined a light back, hitting the same spot as Nisha’s, how

far from the edge would he have to be so that the light never leaves the water?

18. Here’s an example of the “flat mirror problem.” Marjan is looking at herself in the mirror. Assume that her
eyes are 10 cm below the top of her head, and that she stands 180 cm tall. Calculate the minimum length flat
mirror that Marjan would need to see her body from eye level all the way down to her feet. Sketch at least 3
ray traces from her eyes showing the topmost, bottommost, and middle rays. In the following five problems,
you will do a careful ray tracing with a ruler (including the extrapolation of rays for virtual images). It is best
if you can use different colors for the three different ray tracings. When sketching diverging rays, you should
use dotted lines for the extrapolated lines behind a mirror or in front of a lens in order to produce the virtual
image. When comparing measured distances and heights to calculated distances and heights, values within
10% are considered “good.” Use the following cheat sheet as your guide.
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TABLE 17.4:

CONVERGING(CONCAVE)MIRRORS Ray #1: Leaves tip of candle, travels parallel to optic
axis, reflects back through focus.
Ray #2: Leaves tip, travels through focus, reflects back
parallel to optic axis.
Ray #3: Leaves tip, reflects off center of mirror with an
angle of reflection equal to the angle of incidence.

DIVERGING (CONVEX) MIRRORS Ray #1: Leaves tip, travels parallel to optic axis, reflects
OUTWARD by lining up with focus on the OPPOSITE
side as the candle.
Ray #2: Leaves tip, heads toward the focus on the
OPPOSITE side, and emerges parallel to the optic axis.
Ray #3: Leaves tip, heads straight for the mirror center,
and reflects at an equal angle.

CONVERGING (CONVEX) LENSES Ray #1: Leaves tip, travels parallel to optic axis,
refracts and travels through to the focus.
Ray #2: Leaves tip, travels through focus on same side,
travels through lens, and exits lens parallel to optic axis
on opposite side.
Ray #3: Leaves tip, passes straight through center of
lens and exits without bending.

DIVERGING (CONCAVE) LENSES Ray #1: Leaves tip, travels parallel to optic axis,
refracts OUTWARD by lining up with focus on the
SAME side as the candle.
Ray #2: Leaves tip, heads toward the focus on the
OPPOSITE side, and emerges parallel from the lens.
Ray #3: Leaves tip, passes straight through the center
of lens and exits without bending.

19. Consider a concave mirror with a focal length equal to two units, as shown below. (a) Carefully trace three
rays coming off the top of the object in order to form the image.

(b) Measure do and di. (c) Use the mirror/lens equation to calculate di. (d) Find the percent difference between
your measured di and your calculated di. (e) Measure the magnification M and compare it to the calculated
magnification.

20. Consider a concave mirror with unknown focal length that produces a virtual image six units behind the mirror.
(a) Calculate the focal length of the mirror and draw an× at the position of the focus. (b) Carefully trace three
rays coming off the top of the object and show how they converge to form the image.
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(c) Does your image appear bigger or smaller than the object? Calculate the expected magnification and
compare it to your sketch.

21. Consider a convex mirror with a focal length equal to two units. (a) Carefully trace three rays coming off the
top of the object and form the image.

(b) Measure do and di. (c) Use the mirror/lens equation to calculate di. (d) Find the percent difference between
your measured di and your calculated di. (e) Measure the magnification M and compare it to the calculated
magnification.

22. Consider a converging lens with a focal length equal to three units. (a) Carefully trace three rays coming off
the top of the object and form the image.

(b) Measure do and di. (c) Use the mirror/lens equation to calculate di. (d) Find the percent difference between
your measured di and your calculated di. (e) Measure the magnification M and compare it to the calculated
magnification.

23. Consider a diverging lens with a focal length equal to four units.

a. Carefully trace three rays coming off the top of the object and show where they converge to form the
image.

b.
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c. Measure do and di.
d. Use the mirror/lens equation to calculate di.
e. Find the percent difference between your measured di and your calculated di.
f. Measure the magnification M and compare it to the calculated magnification.

24. A piece of transparent goo falls on your paper. You notice that the letters on your page appear smaller than
they really are. Is the goo acting as a converging lens or a diverging lens? Explain. Is the image you see real
or virtual? Explain.

25. An object is placed 30 mm in front of a lens. An image of the object is located 90 mm behind the lens.

a. Is the lens converging or diverging? Explain your reasoning.
b. What is the focal length of the lens?

26. Little Red Riding Hood (aka R−Hood) gets to her grandmother’s house only to find the Big Bad Wolf ( aka
BBW) in her place. R−Hood notices that BBW is wearing her grandmother’s glasses and it makes the wolf’s
eyes look magnified (bigger).

a. Are these glasses for near-sighted or far-sighted people? For full credit, explain your answer thoroughly.
You may need to consult some resources online.

b. Create a diagram of how these glasses correct a person’s vision.

27. To the right is a diagram showing how to make a “ghost light bulb.” The real light bulb is below the box and it
forms an image of the exact same size right above it. The image looks very real until you try to touch it. What
is the focal length of the concave mirror?

28. In your laboratory, light from a 650 nm laser shines on two thin slits. The slits are separated by 0.011 mm. A
flat screen is located 1.5 m behind the slits.

a. Find the angle made by rays traveling to the third maximum off the optic axis.
b. How far from the center of the screen is the third maximum located?
c. How would your answers change if the experiment was conducted underwater?

29. Again, in your laboratory, 540 nm light falls on a pinhole 0.0038 mm in diameter. Diffraction maxima are
observed on a screen 5.0 m away.

a. Calculate the distance from the central maximum to the first interference maximum.
b. Qualitatively explain how your answer to (a) would change if you . . .

i. . . . move the screen closer to the pinhole. ii. . . . increase the wavelength of light. iii. . . . reduce the diameter
of the pinhole.

30. You are to design an experiment to determine the index of refraction of an unknown liquid. You have a small
square container of the liquid, the sides of which are made of transparent thin plastic. In addition you have a
screen, laser, ruler and protractors. Design the experiment. Give a detailed procedure; include a diagram of
the experiment. Tell which equations you would use and give some sample calculations. Finally, tell in detail
what level of accuracy you can expect and explain the causes of lab error in order of importance.
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31. Students are doing an experiment with a Helium-neon laser, which emits 632.5 nm light. They use a diffraction
grating with 8000 lines/cm. They place the laser 1 m from a screen and the diffraction grating, initially, 95 cm
from the screen. They observe the first and then the second order diffraction peaks. Afterwards, they move
the diffraction grating closer to the screen.

(a) Fill in the table below with the expected data based on your understanding of physics. Hint: find the general
solution through algebra before plugging in any numbers.

TABLE 17.5:

Distance of diffraction grating to screen (cm) Distance from central maximum to first order peak
(cm)

95
75
55
35
15

(b) Plot a graph of the first order distance as a function of the distance between the grating and the screen.

(c) How would you need to manipulate this data in order to create a linear plot?

(d) In a real experiment what could cause the data to deviate from the expected values? Explain.

(e) What safety considerations are important for this experiment?

(f) Explain how you could use a diffraction grating to calculate the unknown wavelength of another laser.

32. An abalone shell, when exposed to white light, produces an array of cyan, magenta and yellow. There is a thin
film on the shell that both refracts and reflects the light. Explain clearly why these and only these colors are
observed.

33. A crystal of silicon has atoms spaced 54.2 nm apart. It is analyzed as if it were a diffraction grating using an
x−ray of wavelength 12 nm. Calculate the angular separation between the first and second order peaks from
the central maximum.

34. Laser light shines on an oil film (n = 1.43) sitting on water. At a point where the film is 96 nm thick, a 1st

order dark fringe is observed. What is the wavelength of the laser?
35. You want to design an experiment in which you use the properties of thin film interference to investigate the

variations in thickness of a film of water on glass.

a. List all the necessary lab equipment you will need.
b. Carefully explain the procedure of the experiment and draw a diagram.
c. List the equations you will use and do a sample calculation using realistic numbers.
d. Explain what would be the most significant errors in the experiment and what effect they would have on

the data.

Answers to Selected Problems

1. .
2. .
3. 2200 blue wavelengths
4. 65000 x−rays
5. 6×1014 Hz6.3.3 m
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6. .
7. .
8. (b) vacuum air (c) 1.96×108 m/s
9. 6.99×10−7 m;5.26×10−7 m

10. .
11. .
12. Absorbs red and green.
13. 25◦

14. .
15. 33.3◦

1. 49.7◦

2. No such angle
3. 48.8◦

16. see example problem
17. 85 cm
18. (c) +4 units (e) −1

1. 6 units
2. bigger; M = 3

19. (c) 1.5 units (d) 2/3
20. (c) 3 units (e) −2/3
21. (c) 5.3 units
22. .
23. (b) 22.5 mm
24. .
25. 32 cm

1. 10.2◦

2. 27 cm
3. 20 cm

26. a. 0.72 m
27. .
28. 54 cm,44 cm,21 cm,8.8 cm
29. .
30. 13.5◦

31. 549 nm
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18.1 The Big Idea

In studying fluids we apply the concepts of force, momentum, and energy – which we have learned previously –
to new phenomena. Since fluids are made from a large number of individual molecules, we have to look at their
behavior as an ensemble and not individually. For this reason, we use the concept of conservation of energy density
in place of conservation of energy. Energy density is energy divided by volume.

Key Concepts

• The pressure of a fluid is a measure of the forces exerted by a large number of molecules when they collide
and bounce off its boundary. The unit of pressure is the Pascal (Pa).

• Mass density represents the amount of mass in a given volume. We also speak of fluids as having gravitational
potential energy density, kinetic energy density, and momentum density. These represent the amount of energy
or momentum possessed by a given volume of fluid. If we multiply these quantities by a volume, they will be
completely identical to their versions from earlier chapters.

• Pressure and energy density have the same units: 1 Pa = 1 N/m2 = 1 J/m3. The pressure of a fluid can be
thought of as an arbitrary level of energy density.

• For static fluids and fluids flowing in a steady state all locations in the connected fluid system must have
the same total energy density. This means that the algebraic sum of pressure, kinetic energy density and
gravitational energy density equals zero. Changes in fluid pressure must be equal to changes in energy density
(kinetic and/or gravitational).

• Liquids obey a continuity equation which is based on the fact that liquids are very difficult to compress. This
means that the total volume of a fluid will remain constant in most situations. Imagine trying to compress a
filled water balloon!

• The specific gravity of an object is the ratio of the density of that object to the density of water. Objects with
specific gravities greater than 1.0 ( i.e., greater than water) will sink in water; otherwise, they will float. The
density of fresh water is 1000 kg/m3.

Key Equations and Definitions



ρ = M
V Mass density, in kg/m3

ug = ρgh Gravitational potential energy density of a fluid per unit volume
k = 1

2 ρv2 Kinetic energy density of a fluid per unit volume
P = F

A Pressure is force per unit area
∆P+∆k+∆ug = 0 Bernoulli’s principle
Φ = A · v Flux of fluid with velocityvthrough area A
Fbuoy = ρwatergVdisplaced Archimedes’ principle
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Key Applications

• In a fluid at rest, pressure increases linearly with depth – this is due to the weight of the water above it.

• Archimedes’ Principle states that the upward buoyant force on an object in the water is equal to the weight of
the displaced volume of water. The reason for this upward force is that the bottom of the object is at lower
depth, and therefore higher pressure, than the top. If an object has a higher density than the density of water,
the weight of the displaced volume will be less than the object’s weight, and the object will sink. Otherwise,
the object will float.

• Pascal’s Principle reminds us that, for a fluid of uniform pressure, the force exerted on a small area in contact
with the fluid will be smaller than the force exerted on a large area. Thus, a small force applied to a small area
in a fluid can create a large force on a larger area. This is the principle behind hydraulic machinery.

• Bernoulli’s Principle is a restatement of the conservation of energy, but for fluids. The sum of pressure, kinetic
energy density, and gravitational potential energy density is conserved. In other words, ∆P+∆k+∆ug equals
zero. One consequence of this is that a fluid moving at higher speed will exhibit a lower pressure, and vice
versa. There are a number of common applications for this: when you turn on your shower, the moving
water and air reduce the pressure in the shower stall, and the shower curtain is pulled inward; when a strong
wind blows outside your house, the pressure decreases, and your shutters are blown open; due to the flaps on
airplane wings, the speed of the air below the wing is lower than above the wing, which means the pressure
below the wing is higher, and provides extra lift for the plane during landing. There are many more examples.

• Conservation of flux, Φ, means that a smaller fluid-carrying pipe requires a faster moving fluid. Bernoulli’s
Principle, which says that fast-moving fluids have low pressure, provides a useful result: pressure in a smaller
pipe must be lower than pressure in a larger pipe.

• If the fluid is not in a steady state, energy can be lost in fluid flow. The loss of energy is related to viscosity,
or deviation from smooth flow. Viscosity is related to turbulence, the tendency of fluids to become chaotic in
their motion. In a high viscosity fluid, energy is lost from a fluid in a way that is quite analogous to energy
loss due to current flow through a resistor. A pump can add energy to a fluid system also. The full Bernoulli
Equation takes these two factors, viscosity and pumps, into account.

Fluids Problem Set

1. A block of wood with a density of 920 kg/m3 is floating in a fluid of density 1100 kg/m3. What fraction of
the block is submerged, and what fraction is above the surface?
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2. A rectangular barge 17 m long, 5 m wide, and 2.5 m in height is floating in a river. When the barge is empty,
only 0.6 m is submerged. With its current load, however, the barge sinks so that 2.2 m is submerged. Calculate
the mass of the load.

3. The density of ice is 90% that of water.

a. Why does this fact make icebergs so dangerous?
b. A form of the liquid naphthalene has a specific gravity of 1.58. What fraction of an ice cube would be

submerged in a bath of naphthalene?

4. A cube of aluminum with a specific gravity of 2.70 and side length 4.00 cm is put into a beaker of methanol,
which has a specific gravity of 0.791.

a. Draw a free body diagram for the cube.
b. Calculate the buoyant force acting on the cube.
c. Calculate the acceleration of the cube toward the bottom when it is released.

5. A cube of aluminum (specific gravity of 2.70) and side length 4.00 cm is put in a beaker of liquid naphthalene
(specific gravity of 1.58). When the cube is released, what is its acceleration?

6. Your class is building boats out of aluminum foil. One group fashions a boat with a square 10 cm by 10 cm
bottom and sides 1 cm high. They begin to put 2.5 g coins in the boat, adding them until it sinks. Assume they
put the coins in evenly so the boat doesn’t tip. How many coins can they put in? (You may ignore the mass of
the aluminum boat . . . assume it is zero.)
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7. You are riding a hot air balloon. The balloon is a sphere of radius 3.0 m and it is filled with hot air. The density
of hot air depends on its temperature: assume that the density of the hot air is 0.925 kg/m3, compared to the
usual 1.29 kg/m3 for air at room temperature. The balloon and its payload (including you) have a combined
mass of 100 kg.

a. Draw a free body diagram for the cube.
b. Is the balloon accelerating upward or downward?
c. What is the magnitude of the acceleration?
d. Why do hot air ballooners prefer to lift off in the morning?
e. What would limit the maximum height attainable by a hot air balloon?

8. You are doing an experiment in which you are slowly lowering a tall, empty cup into a beaker of water. The
cup is held by a string attached to a spring scale that measures tension. You collect data on tension as a
function of depth. The mass of the cup is 520 g, and it is long enough that it never fills with water during the
experiment. The following table of data is collected:
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TABLE 18.1:

String tension (N) Depth (cm) Buoyant force (N)
5.2 0
4.9 1
4.2 3
3.7 5
2.9 8
2.3 10
1.7 12
0.7 15
0.3 16
0 17

(a) Complete the chart by calculating the buoyant force acting on the cup at each depth.

(b) Make a graph of buoyant force vs. depth, find a best-fit line for the data points, and calculate its slope.

(c) What does this slope physically represent? (That is, what would a greater slope mean?)

(d) With this slope, and the value for the density of water, calculate the area of the circular cup’s bottom and its
radius.

(e) Design an experiment using this apparatus to measure the density of an unknown fluid.
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9. A 1500 kg car is being lifted by a hydraulic jack attached to a flat plate. Underneath the plate is a pipe with
radius 24 cm.

a. If there is no net force on the car, calculate the pressure in the pipe.
b. The other end of the pipe has a radius of 2.00 cm. How much force must be exerted at this end?
c. To generate an upward acceleration for the car of 1.0 m/s2, how much force must be applied to the small

end of the pipe?

10. A SCUBA diver descends deep into the ocean. Calculate the water pressure at each of the following depths.

a. 15 m.
b. 50 m.
c. 100 m.

11. What happens to the gravitational potential energy density of water when it is siphoned out of a lower main
ditch on your farm and put into a higher row ditch? How is this consistent with Bernoulli’s principle?

12. Water flows through a horizontal water pipe 10.0 cm in diameter into a smaller 3.00 cm pipe. What is the ratio
in water pressure between the larger and the smaller water pipes?

13. A pump is required to pipe water from a well 7.0 m in depth to an open-topped water tank at ground level.
The pipe at the top of the pump, where the water pours into the water tank, is 2.00 cm in diameter. The water
flow in the pipe is 5.00 m/s.

a. What is the kinetic energy density of the water flow?
b. What pressure is required at the bottom of the well? (Assume no energy is lost – i.e., that the fluid is

traveling smoothly.)
c. What power is being delivered to the water by the pump? (Hint: For the next part, refer to Chapter 12)
d. If the pump has an efficiency of 45%, what is the pump’s electrical power consumption?
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e. If the pump is operating on a 220 V power supply (typical for large pieces of equipment like this), how
much electrical current does the pump draw?

f. At 13.5 cents per kilowatt-hour, how much does it cost to operate this pump for a month if it is running
5% of the time?

14. Ouch! You stepped on my foot! That is, you put a force of 550 N in an area of 9 cm2 on the tops of my feet!

a. What was the pressure on my feet?
b. What is the ratio of this pressure to atmospheric pressure?

15. A submarine is moving directly upwards in the water at constant speed. The weight of the submarine is
500,000 N. The submarine’s motors are off.

a. Draw a sketch of the situation and a free body diagram for the submarine.
b. What is the magnitude of the buoyant force acting on the submarine?

16. You dive into a deep pool in the river from a high cliff. When you hit the water, your speed was 20 m/s.
About 0.75 seconds after hitting the water surface, you come to a stop before beginning to rise up towards the
surface. Take your mass to be 60 kg.

a. What was your average acceleration during this time period?
b. What was the average net force acting on you during this time period?
c. What was the buoyant force acting on you during this time period?

17. A glass of water with weight 10 N is sitting on a scale, which reads 10 N. An antique coin with weight 1 N is
placed in the water. At first, the coin accelerates as it falls with an acceleration of g/2. About half-way down
the glass, the coin reaches terminal velocity and continues at constant speed. Eventually, the coin rests on the
bottom of the glass. What was the scale reading when. . .

a. . . . the coin had not yet been released into the water?
b. . . . the coin was first accelerating?
c. . . . the coin reached terminal velocity?
d. . . . the coin came to rest on the bottom?

18. You are planning a trip to the bottom of the Mariana Trench, located in the western Pacific Ocean. The trench
has a maximum depth of 11,000 m, deeper than Mt. Everest is tall! You plan to use your bathysphere to
descend to the bottom, and you want to make sure you design it to withstand the pressure. A bathysphere is a
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spherical capsule used for ocean descent – a cable is attached to the top, and this cable is attached to a winch
on your boat on the surface.

a. Name and sketch your bathysphere.
b. What is the radius of your bathysphere in meters? (You choose – estimate from your picture.)
c. What is the volume of your bathysphere in m3?
d. What is the pressure acting on your bathysphere at a depth of 11,000 m? The density of sea water is

1027 kg/m3.
e. If you had a circular porthole of radius 0.10 m(10 cm) on your bathysphere, what would the inward force

on the porthole be?
f. If the density of your bathysphere is 1400 kg/m3, what is the magnitude of the buoyant force acting on

it when it is at the deepest point in the trench?
g. In order to stop at this depth, what must the tension in the cable be? (Draw an FBD!)

Answers to Selected Problems

1. 0.84
2. 1.4×105 kg
3. a. 90% of the berg is underwater b. 57%
4. b. 5.06×10−4 N c. 7.05 m/s2

5. 4.14 m/s
6. 6. 40 coins
7. b. upward c. 4.5 m/s2 d. Cooler air outside, so more initial buoyant force e. Thin air at high altitudes weighs

almost nothing, so little weight displaced.
8. a. At a depth of 10 cm, the buoyant force is 2.9 N d. The bottom of the cup is 3 cm in radius
9. a. 83,000 Pa b. 104 N c. 110 N

10. a. 248 kPa b. 591 kPa c. 1081 kPa
11. .
12. .0081
13. a. 12500 J/m3 b. 184 kPa c. 1.16 kW d. 2.56 kW e. 11.8 A f. $12.60
14. a. 611 kPa b. 6 atm
15. b. 500,000 N
16. a. 27 m/s2,(2.7 g) upward b. 1600 N c. 2200 N
17. a. 10 N b. 10.5 N c. 11 N d. 11 N
18. a. “The Thunder Road” b. 2.0 m (note: here and below, you may choose differently) c. 33.5 m3 e. 3.5 million N

f. 111 MPa
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19.1 The Big Ideas

Heat is a form of energy transfer. It can change the kinetic energy of a substance. For example, the average molecular
kinetic energy of gas molecules is related to temperature. A heat engine turns a portion of the input heat (thermal
energy) into mechanical work. A second portion of the input heat must be exhausted in order for the engine to have
repetitive motion. Therefore, in a practical engine it is impossible for all the input heat to be converted to work.

Entropy is a measure of disorder, or the variety of ways in which a system can organize itself with the same total
energy. The entropy of any isolated system always tends to disorder (i.e. entropy is always increasing). In the
universe, the entropy of a subset (like evolution on Earth) can decrease (i.e. more order) but the total entropy of the
universe is increasing (i.e. more disorder).

Thermodynamics is the study of heat engines. Any engine or power plant obeys the laws of thermodynamics. The
first law of thermodynamics is a statement of conservation of energy. Total energy, including heat, is conserved in
any process and in the complete cycle of a heat engine. The second law of thermodynamics as it applies to heat
engines gives an absolute limit on the efficiency of any heat engine that goes through repetitious cycles.
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19.2 Molecular Kinetic Theory of a Monatomic
Ideal Gas

The empirical combined gas law is simply a generalization of observed relationships. Using kinetic theory, it is
possible to derive it from the principles of Newtonian mechanics. Previously, we thought of an ideal gas as one that
obeys the combined gas law exactly. Within the current model, however, we can give a specific definition. We treat
a monatomic ideal gas as a system of an extremely large number of very small particles in random motion that
collide elastically between themselves and the walls of their container, where there are no interaction between
particles other than collisions.

Consider some amount (n atoms) of such a gas in a cubical container with side length L. Let’s trace the path of a
single gas atom as it collides with the walls:

FIGURE 19.1
The path of a single gas atom as it un-
dergoes collisions with the walls of its
container

Further, let’s restrict ourselves to considering the motion of the particle along the x axis, and its collisions with
the right y− z wall, as shown in the picture. Therefore, we only consider vx the component of the velocity vector
perpendicular to the y− z wall.

If the particle’s mass is m, in one collision, the particle’s momentum in the x direction changes by

∆p = 2mvx

Also, since it has to travel a distance 2L (back and forth, basically) in the x direction between collisions with the
right y− z wall, the time δt between collisions will be

∆t =
2L
vx

.
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FIGURE 19.2
Illustration x-direction atom from above.

According to Newton’s second law, the force imparted by the single particle on the wall is

F =
∆p
∆t

= 2mvx×
vx

2L
=

mvx
2

L

Now, since there are n (a very large number) atoms present, the net force imparted on the wall will be

Fnet = n×
m(vx

2)avg

L

Where thevx
2 is averaged over all n atoms.

Now let us attempt to relate this to the state variables we considered last chapter. Recall that pressure is defined as
force per unit area:

P =
F
A

Since the area of the wall in question is L2, the pressure exerted by the gas atoms on it will equal:

Pnet =
Fnet

A
= n

m(vx
2)avg

L×L2 = n
m(vx

2)avg

L3

Since, for a cubical box, volume V = L3, the formula above can be reduced to:

Pnet = n
m(vx

2)avg

V
or,

PnetV = nm(vx
2)avg [1]
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By the Pythagorean theorem, any three-dimensional velocity vector has the following property:

v2 = vx
2 + vy

2 + vz
2

Averaging this for the n particles in the box, we get

(v2)avg = (vx
2)avg +(vy

2)avg +(vz
2)avg

Since the motions of the particles are completely random (as stated in our assumptions), it follows that the averages
of the squares of the velocity components should be equal: there is no reason the gas particles would prefer to travel
in the x direction over any other. In other words,

(vx
2)avg = (vy

2)avg = (vz
2)avg

Plugging this into the average equation above, we find:

(v2)avg = 3× (vx
2)avg = 3× (vy

2)avg = 3× (vz
2)avg

and

(v2)avg/3 = (vx
2)avg

Plugging this into equation [1], we get:

PnetV =
nm(v2)avg

3
[2]

The left side of the equation should look familiar; this quantity is proportional to the average kinetic energy of the
molecules in the gas, since

KEavg =
1
2

m(v2)avg

Therefore, we have:

PnetV =
2
3

n(KE)avg [3]

This is a very important result in kinetic theory, since it expresses the product of two state variables, or system
parameters, pressure and volume, in terms of an average over the microscopic constituents of the system. Recall the
empirical ideal gas law from last chapter:

PV = nkT
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The left side of this is identical to the left side of equation [3], whereas the only variable on the right side is
temperature. By setting the left sides equal, we find:

2
3

n(KE)avg = nkT

or

T =
2
3k

(KE)avg

Therefore, according to the kinetic theory of an monoatomic ideal gas, the quantity we called temperature is
— up to a constant coefficient — a direct measure of the average kinetic energy of the atoms in the gas. This
definition of temperature is much more specific than the one from the previous chapter, since it is based essentially
on Newtonian mechanics, rather than a somewhat ambiguous system of ranking.

Temperature, Again

Now that we have defined temperature for a monoatomic gas, a relevant question is: can we extend this definition to
other substances? It turns out that yes, we can, but with a significant caveat. In fact, according to classical kinetic
theory, temperature is always proportional to the average kinetic energy of molecules in a substance. The constant
of proportionality, however, is not always the same.

Consider: the only way to increase the kinetic energies of the atoms in a monoatomic gas is to increase their
translational velocities. Accordingly, we assumed above that the kinetic energies of such atoms are stored equally in
the three components (x,y, and z) of their velocities.

On the other hand, other gases — called diatomic — consist of two atoms held by a bond. This bond can be modeled
as a spring, and the two atoms and bond together as a harmonic oscillator. Now, a single molecule’s kinetic energy
can be increased either by increasing its speed, by making it vibrate in simple harmonic motion, or by making
it rotate around its center of mass. This difference is understood in physics through the concept of degrees of
freedom: each degree of freedom for a molecule or particle corresponds to a possibility of increasing its kinetic
energy independently of the kinetic energy in other degrees.

It might seem to you that monatomic gases should have one degree of freedom: their velocity. They have three
because their velocity can be altered in one of three mutually perpendicular directions without changing the kinetic
energy in other two — just like a centripetal force does not change the kinetic energy of an object, since it is always
perpendicular to its velocity. These are called translational degrees of freedom.

Diatomic gas molecules, on the other hand have more: the three translational explained above still exist, but there
are now also vibrational and rotational degrees of freedom. Monatomic and diatomic degrees of freedom can be
illustrated like this:
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Temperature is an average of kinetic energy over degrees of freedom, not a sum. Let’s try to understand why this is in
reference to our monoatomic ideal gas. In the derivation above, volume was constant; so, temperature was essentially
proportional to pressure, which in turn was proportional to the kinetic energy due to translational motion of the
molecules. If the molecules had been able to rotate as well as move around the box, they could have had the same
kinetic energy with slower translational velocities, and, therefore, lower temperature. In other words, in that case,
or assumption that the kinetic energy of the atoms only depends on their velocities, implied between equations
[2] and [3], would not have held.Therefore, the number of degrees of freedom in a substance determines the
proportionality between molecular kinetic energy and temperature: the more degrees of freedom, the more
difficult it will be to raise its temperature with a given energy input.

In solids, degrees of freedom are usually entirely vibrational; in liquids, the situation becomes more complicated.
We will not attempt to derive results about these substances, however.

A note about the above discussion: since the objects at the basis of our understanding of thermodynamics are
atoms and molecules, quantum effects can make certain degrees of freedom inaccessible at specific temperature
ranges. Unlike most cases in your current physics class, where these can be ignored, in this case, quantum effects
can make an appreciable difference. For instance, the vibrational degrees of freedom of diatomic gas molecules
discussed above are, for many gases, inaccessible in very common conditions, although we do not have the means
to explain this within our theory. In fact, this was one of the first major failures of classical physics that ushered in
the revolutionary discoveries of the early 20th century.

Thermal Energy

In light of the above derivation, it should not surprise you that the kinetic energy from motion of molecules
contributes to what is called the thermal energy of a substance. This type of energy is called sensible energy.
In ideal gases, this is the only kind of thermal energy present.

Solids and liquids also have a different type of thermal energy as well, called Latent Energy, which is associated
with potential energy of their intermolecular bonds in that specific phase — for example the energy it takes to break
the bonds between water molecules in melting ice (remember, we assumed molecules do not interact in the ideal gas
approximation).

To recap, there are two types of Thermal Energy:

• The kinetic energy from the random motion of the molecules or atoms of the substance, called Sensible
Energy

• The intermolecular potential energy associated with changes in the phase of a system (called Latent Energy).
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Heat

The term heat is formally defined as a transfer of thermal energy between substances. Note that heat is not the same
as thermal energy. Before the concept of thermal energy, physicists sometimes referred to the ’heat energy’ of a
substance, that is, the energy it received from actual ’heating’ (heating here can be understood as it is defined above,
though for these early physicists and chemists it was a more ’common sense’ idea of heating: think beaker over
Bunsen burner). The idea was then to try to explain thermodynamic phenomena through this concept.

The reason this approach fails is that — as stated in the paragraphs above — it is in fact thermal energy that is most
fundamental to the science, and ’heating’ is not the only way to change the thermal energy of a substance. For
example, if you rub your palms together, you increase the thermal energy of both palms.

Once heat (a transfer of thermal energy) is absorbed by a substance, it becomes indistinguishable from the thermal
energy already present: what methods achieved that level of thermal energy is no longer relevant. In other words,
’to heat’ is a well defined concept as a verb: its use automatically implies some kind of transfer. When heat using as
a noun, one needs to be realize that it must refer to this transfer also, not something that can exist independently.

Specific Heat Capacity and Specific Latent Heat

The ideas in the paragraphs above can be understood better through the concept of specific heat capacity (or specific
heat for short), which relates an increase in temperature of some mass of a substance to the amount of heat required
to achieve it. In other words, for any substance, it relates thermal energy transfers to changes in temperature. It
has units of Joules per kilogram Kelvin. Here is how we can define and apply specific heat (Q refers to heat supplied,
m to the mass of the substance and c to its specific heat capacity):

Q = cm∆T [2]

Heat capacity is largely determined by the number of degrees of freedom of the molecules in a substance (why?).
However, it also depends on other parameters, such as pressure. Therefore, the formula above implicitly assumes
that these external parameters are held constant (otherwise we wouldn’t know if we’re measuring a change in specific
heat is real or due to a change in pressure).

When a substance undergoes a phase change, its temperature does not change as it absorbs heat. We referred to this
as an increase or decrease in latent energy earlier. In this case, the relevant question is how much heat energy does
it require to change a unit mass of the substance from one phase to another? This ratio is known as latent heat, and
is related to heat by the following equation (L refers to the latent heat):

Q = Lm [3]

During a phase change, the number of degrees of freedom changes, and so does the specific heat capacity. Heat
capacity can also depend on temperature within a given phase, but many substances, under constant pressure, exhibit
a constant specific heat over a wide range of temperatures. For instance, here is a graph of temperature vs heat input
for a mole (6.0221415×1023 molecules) of water. Note that the x-axis of the graph is called ’relative heat energy’
because it takes a mole of water at 0 degrees Celcius as the reference point.
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The sloped segments on the graph represent increases in temperature. These are governed by equation [1]. The
flat segments represent phase transitions, governed by equation [2]. Notice that the sloped segments have constant,
though different, slopes. According to equation [1], the heat capacity at any particular phase would be the slope of
the segment that corresponds to that phase on the graph. The fact that the slopes are constant means that, within a
particular phase, the heat capacity does not change significantly as a function of temperature.

Entropy

The last major concept we are going to introduce in this chapter is entropy. We noted earlier that temperature
is determined not just by how much thermal energy is present in a substance, but also how it can be distributed.
Substances whose molecules have more degrees of freedom will generally require more thermal energy for an equal
temperature increase than those whose molecules have fewer degrees of freedom.

Entropy is very much related to this idea: it quantifies how the energy actually is distributed among the degrees of
freedom available. In other words, it is a measure of disorder in a system. An example may illustrate this point.
Consider a monatomic gas with N atoms (for any appreciable amount of gas, this number will be astronomical).
It has 3N degrees of freedom. For any given value of thermal energy, there is a plethora of ways to distribute the
energy among these. At one extreme, it could all be concentrated in the kinetic energy of a single atom. On the
other, it could be distributed among them all. According to the discussion so far, these systems would have the same
temperature and thermal energy. Clearly, they are not identical, however. This difference is quantified by entropy:
the more evenly distributed the energy, the higher the entropy of the system. Here is an illustration:
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19.3 The Laws of Thermodynamics

Now that we have defined the terms that are important for an understanding of thermodynamics, we can state the
laws that govern relevant behavior. These laws, unlike Newton’s Laws or Gravity, are not based on new empirical
observations: they can be derived based on statistics and known principles, such as conservation of energy. By
understanding the laws of thermodynamics we can analyze heat engines, or machines that use heat energy to perform
mechanical work.

The First Law

The First Law of Thermodynamics is simply a statement of energy conservation applied to thermodynamics
systems: the change in the internal — for our purposes, this is the same as thermal — energy (denoted ∆U) of
a closed system is equal to the difference of net input heat and performed work. In other words,

∆U = Qnet −W [4] First Law

Note that this does not explain how the system will transform input heat to work, it simply enforces the energy
balance.

The Second Law

The Second Law of Thermodynamics states that the entropy of an isolated system will always increase until it
reaches some maximum value. Consider it in light of the simplified example in the entropy section: if we allow
the low entropy system to evolve, it seems intuitive collisions will eventually somehow distribute the kinetic energy
among the atoms.

The Second Law generalizes this intuition to all closed thermodynamic systems. It is based on the idea that in a
closed system, energy will be randomly exchanged among constituent particles — like in the simple example above
— until the distribution reaches some equilibrium (again, in any macroscopic system there will be an enormous
number of of atoms, degrees of freedom, etc). Since energy is conserved in closed systems, this equilibrium has to
preserve the original energy total. In this equilibrium, the Second Law — fundamentally a probabilistic statement
— posits that the energy will be distributed in the most likely way possible. This typically means that energy will be
distributed evenly across degrees of freedom.

This allows us to formulate the Second Law in another manner, specifically: heat will flow spontaneously from a
high temperature region to a low temperature region, but not the other way. This is just applying the thermodynamic
vocabulary to the logic of the above paragraph: in fact, this is the reason for the given definition of temperature.
When two substances are put in thermal contact (that is, they can exchange thermal energy), heat will flow from the
system at the higher temperature (because it has more energy in its degrees of freedom) to the system with lower
temperature until their temperatures are the same.

When a single system is out equilibrium, there will be a net transfer of energy from one part of it to another. In
equilibrium, energy is still exchanged among the atoms or molecules, but not on a system-wide scale. Therefore,
entropy places a limit on how much work a system can perform: the higher the entropy, the more even the distribution
of energy, the less energy available for transfer.
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19.4 Heat Engines

Heat engines transform input heat into work in accordance with the laws of thermodynamics. For instance, as we
learned in the previous chapter, increasing the temperature of a gas at constant volume will increase its pressure.
This pressure can be transformed into a force that moves a piston.

The mechanics of various heat engines differ but their fundamentals are quite similar and involve the following steps:

1. Heat is supplied to the engine from some source at a higher temperature (Th).
2. Some of this heat is transferred into mechanical energy through work done (W ).
3. The rest of the input heat is transferred to some source at a lower temperature (Tc) until the system is in its

original state.

A single cycle of such an engine can be illustrated as follows:

In effect, such an engine allows us to ’siphon off’ part of the heat flow between the heat source and the heat sink.
The efficiency of such an engine is define as the ratio of net work performed to input heat; this is the fraction of heat
energy converted to mechanical energy by the engine:

e =
W
Qi

[5] Efficiency of a heat engine

If the engine does not lose energy to its surroundings (of course, all real engines do), then this efficiency can be
rewritten as

e =
Qi−Qo

Qi
[6] Efficiency of a lossless heat engine

A Carnot Engine, the most efficient heat engine possible, has an efficiency equal to

ec = 1− Tc

Th
[7] Efficiency of a Carnot (ideal) heat engine

where Tc and Th are the temperatures of the hot and cold reservoirs, respectively.
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Some Important Points

• In a practical heat engine, the change in internal energy must be zero over a complete cycle. Therefore, over
a complete cycle W = ∆Q.

• The work done by a gas during a portion of a cycle = P∆V , note ∆V can be positive or negative.

Gas Heat Engines

• When gas pressure-forces are used to move an object then work is done on the object by the expanding gas.
Work can be done on the gas in order to compress it.

• If you plot pressure on the vertical axis and volume on the horizontal axis (see P−V diagrams in the last
chapter), the work done in any complete cycle is the area enclosed by the graph. For a partial process, work is
the area underneath the curve, orP∆V .

Question:A heat engine operates at a temperature of 650K. The work output is used to drive a pile driver, which is
a machine that picks things up and drops them. Heat is then exhausted into the atmosphere, which has a temperature
of 300K.

a) What is the ideal efficiency of this engine?

b.) The engine drives a 1200kg weight by lifting it 50m in 2.5sec. What is the engine’s power output?

c) If the engine is operating at 50% of ideal efficiency, how much power is being consumed?

d) The fuel the engine uses is rated at 2.7×106J/kg. How many kg of fuel are used in one hour?

Answer:

a) We will plug the known values into the formula to get the ideal efficiency.

η = 1− Tcold

T

hot=1-300K 650K=54%

b) To find the power of the engine, we will use the power equation and plug in the known values.

P =
W
t
=

Fd
t

=
mad

t
=

1200kg×9.8m/s2×50m
2.5sec

= 240kW

c) First, we know that it is operating at 50% of ideal efficiency. We also know that the max efficiency of this engine
is 54%. So the engine is actually operating at

.5×54% = 27%

of 100% efficiency. So 240kW is 27% of what?

.27x = 240kW⇒ x =
240kW
.27

= 890kW
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1. Consider a molecule in a closed box. If the molecule collides with the side of the box, how is the force exerted
by the molecule on the box related to the momentum of the molecule? Explain conceptually, in words rather
than with equations.

2. If the number of molecules is increased, how is the pressure on a particular area of the box affected? Explain
conceptually, in words rather than with equations.

3. The temperature of the box is related to the average speed of the molecules. Use momentum principles to
relate temperature to pressure. Explain conceptually, in words rather than with equations.

4. What would happen to the number of collisions if temperature and the number of molecules remained fixed,
but the volume of the box increased? Explain conceptually, in words rather than with equations.

5. Use the reasoning in the previous four questions to qualitatively derive the ideal gas law.
6. Typical room temperature is about 300 K. As you know, the air in the room contains both O2 and N2 gases,

with nitrogen the lower mass of the two. If the average kinetic energies of the oxygen and nitrogen gases are
the same (since they are at the same temperature), which gas has a higher average speed?

7. Use the formula P = F/A to argue why it is easier to pop a balloon with a needle than with a finger (pretend
you don’t have long fingernails).

8. Take an empty plastic water bottle and suck all the air out of it with your mouth. The bottle crumples. Why,
exactly, does it do this?

9. You will notice that if you buy a large drink in a plastic cup, there will often be a small hole in the top of the
cup, in addition to the hole that your straw fits through. Why is this small hole necessary for drinking?

10. Suppose you were swimming in a lake of liquid water on a planet with a lower gravitational constant g than
Earth. Would the pressure 10 meters under the surface be the same, higher, or lower, than for the equivalent
depth under water on Earth? (You may assume that the density of the water is the same as for Earth.)

11. Why is it a good idea for Noreen to open her bag of chips before she drives to the top of a high mountain?
12. Explain, using basic physics conservation laws, why the following conditions would cause the ideal gas law

to be violated:

a. There are strong intermolecular forces in the gas.
b. The collisions between molecules in the gas are inelastic.
c. The molecules are not spherical and can spin about their axes.
d. The molecules have non-zero volume.

To the right is a graph of the pressure and volume of a gas in a container that has an adjustable volume. The lid
of the container can be raised or lowered, and various manipulations of the container change the properties of
the gas within. The points a,b, and c represent different stages of the gas as the container undergoes changes
(for instance, the lid is raised or lowered, heat is added or taken away, etc.) The arrows represent the flow of
time. Use the graph to answer the following questions.

13. Consider the change the gas undergoes as it transitions from point b to point c. What type of process is this?

a. adiabatic
b. isothermal
c. isobaric
d. isochoric
e. entropic

14. Consider the change the gas undergoes as it transitions from point c to point a. What type of process is this?

a. adiabatic
b. isothermal
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c. isobaric
d. isochoric
e. none of the above

15. Consider the change the gas undergoes as it transitions from point a to point b. Which of the following best
describes the type of process shown?

a. isothermal
b. isobaric
c. isochoric

16. How would an isothermal process be graphed on aP−V diagram?
17. Write a scenario for what you would do to the container to make the gas within undergo the cycle described

above.
18. Why is it so cold when you get out of the shower wet, but not as cold if you dry off first before getting out of

the shower? _____________________________________________________________
19. Antonio is heating water on the stove to boil eggs for a picnic. How much heat is required to raise the

temperature of his 10.0-kg vat of water from 20◦C to 100◦C?
20. Amy wishes to measure the specific heat capacity of a piece of metal. She places the 75-g piece of metal in a

pan of boiling water, then drops it into a styrofoam cup holding 50 g of water at 22◦C. The metal and water
come to an equilibrium temperature of 25◦C. Calculate:

a. The heat gained by the water
b. The heat lost by the metal
c. The specific heat of the metal

21. John wishes to heat a cup of water to make some ramen for lunch. His insulated cup holds 200 g of water at
20◦C. He has an immersion heater rated at 1000 W (1000 J/s) to heat the water.

a. How many JOULES of heat are required to heat the water to 100◦C?
b. How long will it take to do this with a 1000-W heater?
c. Convert your answer in part b to minutes.

22. You put a 20g cylinder of aluminum (c = 0.2 cal/g/◦C) in the freezer (T = −10◦C). You then drop the
aluminum cylinder into a cup of water at 20◦C. After some time they come to a common temperature of 12◦C.
How much water was in the cup?

23. Emily is testing her baby’s bath water and finds that it is too cold, so she adds some hot water from a kettle
on the stove. If Emily adds 2.00 kg of water at 80.0◦C to 20.0 kg of bath water at 27.0◦C, what is the final
temperature of the bath water?

24. You are trying to find the specific heat of a metal. You heated a metal in an oven to 250◦C. Then you dropped
the hot metal immediately into a cup of cold water. To the right is a graph of the temperature of the water
versus time that you took in the lab. The mass of the metal is 10g and the mass of the water is 100g. Recall
that water has a specific heat of 1 cal/g◦C.
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25. How much heat is required to melt a 20 g cube of ice if

a. the ice cube is initially at 0◦C
b. the ice cube is initially at −20◦C (be sure to use the specific heat of ice)

26. A certain alcohol has a specific heat of 0.57 cal/g◦C and a melting point of −114◦C. You have a 150 g cup of
liquid alcohol at 22◦C and then you drop a 10 g frozen piece of alcohol at−114◦C into it. After some time the
alcohol cube has melted and the cup has come to a common temperature of 7◦C. (a) What is the latent heat of
fusion (i.e. the ’L’ in the Q = mL equation) for this alcohol? (b) Make a sketch of the graph of the alcohol’s
temperature vs. time

(c) Make a sketch of the graph of the water’s temperature vs. time

27. Calculate the average speed of N2 molecules at room temperature (300 K). (You remember from your
chemistry class how to calculate the mass (in kg) of an N2 molecule, right?)

28. How high would the temperature of a sample of O2 gas molecules have to be so that the average speed of the
molecules would be 10% the speed of light?

29. How much pressure are you exerting on the floor when you stand on one foot? (You will need to estimate the
area of your foot in square meters.)

30. Calculate the amount of force exerted on a 2 cm× 2 cm patch of your skin due to atmospheric pressure
(P0 = 101,000 Pa). Why doesn’t your skin burst under this force?

31. Use the ideal gas law to estimate the number of gas molecules that fit in a typical classroom.
32. Assuming that the pressure of the atmosphere decreases exponentially as you rise in elevation according to

the formula P = P0e
-h a ,where P_0 istheatmosphericpressureatsealevel (101,000 Pa) , h isthealtitudeinkmandaisthescale heighto f theatmosphere
(a ≈ 8.4 km).

a. Use this formula to determine the change in pressure as you go from San Francisco to Lake Tahoe, which
is at an elevation approximately 2 km above sea level.

b. If you rise to half the scale height of Earth’s atmosphere, by how much does the pressure decrease?
c. If the pressure is half as much as on sea level, what is your elevation?

33. At Noah’s Ark University the following experiment was conducted by a professor of Intelligent Design (formerly
Creation Science). A rock was dropped from the roof of the Creation Science lab and, with expensive equipment,
was observed to gain 100 J of internal energy. Dr. Dumb explained to his students that the law of conservation of
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energy required that if he put 100 J of heat into the rock, the rock would then rise to the top of the building. When
this did not occur, the professor declared the law of conservation of energy invalid.

a. Was the law of conservation of energy violated in this experiment, as was suggested? Explain.
b. If the law wasn’t violated, then why didn’t the rock rise?

34. An instructor has an ideal monatomic helium gas sample in a closed container with a volume of 0.01 m3, a temper-
ature of 412 K, and a pressure of 474 kPa.

a. Approximately how many gas atoms are there in the container?
b. Calculate the mass of the individual gas atoms.
c. Calculate the speed of a typical gas atom in the container.
d. The container is heated to 647 K. What is the new gas pressure?
e. While keeping the sample at constant temperature, enough gas is allowed to escape to decrease the

pressure by half. How many gas atoms are there now?
f. Is this number half the number from part (a)? Why or why not?
g. The closed container is now compressed isothermally so that the pressure rises to its original pressure.

What is the new volume of the container?
h. Sketch this process on a P-V diagram.
i. Sketch cubes with volumes corresponding to the old and new volumes.

35. A famous and picturesque dam, 80 m high, releases 24,000 kg of water a second. The water turns a turbine that
generates electricity.

a. What is the dam’s maximum power output? Assume that all the gravitational potential energy of the
water is converted into electrical energy.

b. If the turbine only operates at 30% efficiency, what is the power output?
c. How many Joules of heat are exhausted into the atmosphere due to the plant’s inefficiency?

36. A heat engine operates at a temperature of 650 K. The work output is used to drive a pile driver, which is a machine
that picks things up and drops them. Heat is then exhausted into the atmosphere, which has a temperature of 300 K.

a. What is the ideal efficiency of this engine?
b. The engine drives a 1200 kg weight by lifting it 50 m in 2.5 sec. What is the engine’s power output?
c. If the engine is operating at 50% of ideal efficiency, how much power is being consumed?
d. How much power is exhausted?
e. The fuel the engine uses is rated at 2.7×106 J/kg. How many kg of fuel are used in one hour?

37. Calculate the ideal efficiencies of the following sci-fi heat engines:

a. A nuclear power plant on the moon. The ambient temperature on the moon is 15 K. Heat input from
radioactive decay heats the working steam to a temperature of 975 K.

b. A heat exchanger in a secret underground lake. The exchanger operates between the bottom of a lake,
where the temperature is 4 C, and the top, where the temperature is 13 C.

c. A refrigerator in your dorm room at Mars University. The interior temperature is 282 K; the back of the
fridge heats up to 320 K.
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38. How much external work can be done by a gas when it expands from 0.003 m3 to 0.04 m3 in volume under a constant
pressure of 400 kPa? Can you give a practical example of such work?

39. In the above problem, recalculate the work done if the pressure linearly decreases from 400 kPa to 250 kPa under
the same expansion. Hint: use a PV diagram and find the area under the line.

40. One mole (N = 6.02× 1023) of an ideal gas is moved through the following states as part of a heat engine. The
engine moves from state A to state B to state C, and then back again. Use the Table (19.1) to answer the following
questions:

a. Draw a P-V diagram.
b. Determine the temperatures in states A, B, and C and then fill out the table.
c. Determine the type of process the system undergoes when transitioning from A to B and from B to C.

(That is, decide for each if it is isobaric, isochoric, isothermal, or adiabatic.)
d. During which transitions, if any, is the gas doing work on the outside world? During which transitions,

if any, is work being done on the gas?
e. What is the amount of net work being done by this gas?

TABLE 19.1:

State Volume (m3) Pressure (atm) Temperature (K)
A 0.01 0.60
B 0.01 0.25
C 0.02 0.25

41. A sample of gas is used to drive a piston and do work. Here’s how it works:

• The gas starts out at standard atmospheric pressure and temperature. The lid of the gas container is
locked by a pin.

• The gas pressure is increased isochorically through a spigot to twice that of atmospheric pressure.
• The locking pin is removed and the gas is allowed to expand isobarically to twice its volume, lifting up a

weight. The spigot continues to add gas to the cylinder during this process to keep the pressure constant.
• Once the expansion has finished, the spigot is released, the high-pressure gas is allowed to escape, and

the sample settles back to 1 atm.
• Finally, the lid of the container is pushed back down. As the volume decreases, gas is allowed to escape

through the spigot, maintaining a pressure of 1 atm. At the end, the pin is locked again and the process
restarts.

a. Draw the above steps on a P−V diagram.
b. Calculate the highest and lowest temperatures of the gas.

42. A heat engine operates through 4 cycles according to the PV diagram sketched below. Starting at the top left
vertex they are labeled clockwise as follows: a, b, c, and d.

a. From a−b the work is 75 J and the change in internal energy is 100 J; find the net heat.
b. From the a-c the change in internal energy is −20 J. Find the net heat from b-c.
c. From c-d the work is −40 J. Find the net heat from c-d-a.
d. Find the net work over the complete 4 cycles.
e. The change in internal energy from b-c-d is −180 J. Find:

a. the net heat from c-d
b. the change in internal energy from d-a
c. the net heat from d-a
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43. A 0.1 sample mole of an ideal gas is taken from state A by an isochoric process to state B then to state C by
an isobaric process. It goes from state C to D by a process that is linear on a PV diagram, and then it goes
back to state A by an isobaric process. The volumes and pressures of the states are given in the Table 19.2);
use this data to complete the following:

a. Find the temperature of the 4 states
b. Draw a PV diagram of the process
c. Find the work done in each of the four processes
d. Find the net work of the engine through a complete cycle
e. If 75 J of heat is exhausted in D-A and A-B and C-D are adiabatic, how much heat is inputted in B-C?
f. What is the efficiency of the engine?

TABLE 19.2:

state Volume in m3×10−3 Pressure in N/m2×105

A 1.04 2.50
B 1.04 4.00
C 1.25 4.00
D 1.50 2.50

Answers to Selected Problems

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. .
9. .

10. .
11. .
12. .
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13. .
14. .
15. .
16. .
17. .
18. .
19. 800,000 cal or 3360 kJ

1. 150 cal (630 J)
2. same as a!
3. 0.027 cal/g◦C (0.11 J/g◦C)

1. 67,000 J
2. 67.2 s
3. 1.1 min

20. 11.0 g
21. 31.8◦C
22. 0.44 cal/g◦C

1. 1600 cal (6720 J)
2. 1800 cal (7560 J)

23. 59.3 cal/g
24. 517 m/s
25. 1.15×1012 K
26. .
27. 40 N
28. ≈ 1028 molecules

1. 21,000 Pa
2. Decreases to 61,000 Pa
3. 5.8 km

1. No
2. allowed by highly improbable state. More likely states are more disordered.

1. 8.34×1023

2. 6.64×10−27 kg
3. 1600 m/s
4. 744 kPa
5. 4.2×1020 or 0.0007 moles
6. 0.00785 m3

1. 1.9 MW
2. 0.56 MW
3. 1.3 Mw

1. 54%
2. 240 kW
3. 890 kW
4. 590 kW
5. 630 kg

1. 98%
2. 4.0%
3. 12%
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29. 14800 J
30. 12,000 J
31. (b) 720 K,300 K,600 K (c) isochoric; isobaric (d) C to A; B−C (e) 0.018 J
32. b. 300 K,1200 K

1. 1753 J
2. −120 J
3. 80 J
4. 35 J
5. −100 J,80 J,80 J
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20.1 Thermodynamics

This chapter is a short introduction to the basics of thermodynamics: state variables and their measurements, as
well as the empirical gas laws. Thermodynamics is a rich and complicated science, and the chapters that follow
attempt to only outline its tenets. This chapter presents some thermodynamic phenomena in a manner that reflects
how they were first discovered — through observation of experiments on various gases. The next chapter links
this empirical understanding with statistical mechanics and kinetic theory and discusses the practical applications of
thermodynamics.

The Thermodynamic Approach to Describing Systems

In kinematics, once the initial conditions of a system are set — we are given the masses and positions of objects in
question as well as the forces acting on them, we can theoretically obtain all future information about the system.
By applying Newton’s Laws, we can determine the positions and velocities of the objects at any point in time.

However, once we are talking about systems that consist of trillions of individual particles in constant motion, such
a description becomes inadequate. In this case, instead of tracking the velocities and positions of each individual
particle, we track several parameters, or state variables: aggregate quantities that sufficiently describe the system
in question. The state variables we will use in our study of thermodynamics include pressure, denoted by the letter
P, volume (V ), and temperature (T ).

For example, it can be shown that the temperature of a substance (whether gas, solid, or liquid) is related to the
internal motion (and therefore, kinetic energy) of the molecules or atoms that constitute it. In a gas, the molecules
or atoms might be flying around freely, while in a solid they can be thought of as trillions of masses connected by
springs. Keeping track of such complicated motions on such a large scale is impossible, so we use the concept of
temperature to obtain a significant amount of information about these motions in a single number.

Two Roads to Thermodynamics

Upon formulating his law of universal gravitation, Newton remarked that:

I have not as yet been able to discover the reason for these properties of gravity from phenomena, and I do not feign
hypotheses.

In other words, Newton realized that his theory of gravity was descriptive: it could predict when and where an object
would fall, but could not explain why this happened.

Thermodynamics started in the same manner. Specifically, early physicists and chemists performed experiments on
various gases and found certain empirical relationships between the parameters defined above (pressure, temperature,
volume) that seemed to hold universally. The values of such parameters were measured using items such as pressure
gauges and thermometers. This is the basis for the empirical gas laws, which are the main substance of this
chapter. In reality, the laws they discovered were not always exact for all gases, but always seemed close to simple
mathematical representations. To account for this discrepancy, scientists created the theoretical construct known as
an ideal gas. We will define this concept later, but for now an ideal gas can be thought of one that always exactly
obeys the laws listed later in the chapter.
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FIGURE 20.1
Internal motion of molecules in a solid and gas. The concept of temperature allows us to obtain information about
such motions without keeping precise track of them.

However, it was later understood that the results of this chapter are not, in themselves, irreducible, like (for our
purposes) Newton’s laws were. Using other approaches (statistical mechanics and molecular kinetic theory) it was
shown that the results we study can be considered statistical in their nature. To do this, various substances are
represented through models, based on their microscopic constituents, that accurately model their behavior. The
macroscopic parameters defined above are then found by ’averaging’ some quantity over all the particles that make
up a system. As hinted in the figure above, for instance, temperature is related to the kinetic energy of molecules in
a substance.

For the purposes of this chapter, however, we look at thermodynamics as an empirical science based on observation.

Pressure and Volume

Before we go further into the empirical gas laws, let’s consider the parameters described above and how exactly they
relate to gases. Since gases generally occupy all the volume available to them, the volume of a gas is simply the
volume of the container that holds it.

As you may remember, pressure is defined as force per unit area. When talking about gases, we refer to the pressure
that a gas exerts on the walls of its container. You should remember from the pressure chapter that atmospheric
pressure exerts a force of about 100,000 N

m2 , or Pascals. Often, when actually measuring gas pressure, we really
measure the difference between the pressure exerted by the gas and the air pressure, since most common pressure
gauges do not take air pressure into account. It is important to keep this fact in mind when performing experiments.

For instance, consider the example below: an inflatable balloon. The gas pressure inside is greater than the air
pressure outside, since the elastic force wants to contract the balloon and essentially pushes in the same direction as
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air pressure. To measure the difference between the air pressure and the gas pressure, we can use a simple gauge:
a piston connected to a spring. If we connect it to the inside of the balloon (without any gas leaks), the piston will
contract the spring until the spring force is equal to the pressure of the gas times the area of the piston.

FIGURE 20.2
An illustration of gas pressure and its measurement

Temperature

Defining temperature rigorously is a difficult task and we will attempt to refine our understanding through the
following chapters. As a first approximation, temperature can be defined as a quantifiable measure of the ’hotness’
of an object. It’s important to note that temperature is rigorously defined only for systems in thermodynamic
equilibrium:

Thermodynamic Equilibrium
A closed system is in thermodynamic equilibrium if the macroscopic parameters associated with it (such as
pressure, temperature, and volume) will remain constant indefinitely.

In mechanics, an object was in equilibrium if the forces on it were balanced; when this was true the quantities
associated with the object (velocity, position, acceleration) would not change. Likewise, a system in thermodynamic
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equilibrium is in a kind of balance: if left alone, the relevant macroscopic parameters will not change.

The usefulness of the concept of temperature becomes apparent with the following experimentally verifiable fact:
when two objects or systems at different temperatures are brought into thermal contact, the hotter one will cool,
while the cooler one will heat up, until their temperatures are equal. As we will see more clearly later, this is a
corollary of the famous Second Law of Thermodynamics.

FIGURE 20.3
When two objects at different temperatures are brought into contact, their temperatures will get closer until the
objects are in thermal equilibrium.

With these definitions, we can refine our understanding of temperature in terms of the following property.

Temperature
Ranks substances according to their ’hotness’; systems at different temperatures that are brought into thermal
contact will eventually reach thermal equilibrium and have equal temperatures.

A Note on Temperature Scales and Measurement

To measure temperature, we have to use a device called a thermometer, which can be anything that exhibits quantifi-
able physical changes with changes in temperature. An example of this is the familiar mercury-based thermome-
ter. This type of thermometer, which resembles the model below, works because the length of the mercury strip
(in reality, its volume) increases linearly with temperature (this relationship breaks down under certain conditions,
but we can ignore this). As an aside, it should be noted that this discussion of temperature is far from complete.
However, for the sake of brevity, we leave this definition as is and will return to a more formal approach in the next
chapter (which should clear up some of the confusion that may arise).

A thermometer is brought into thermal contact with a system, and once it is in thermal equilibrium with the system
— exactly like in the illustration above — its particular physical property (for example, the length of the mercury
strip) is translated into a number that is referred to as the temperature of the system. Of course, the thermometer
alters the temperature of the system as well, but generally this change is small and can be ignored (for instance, a
human being is much much bigger than a mercury thermometer).

There are different temperature scales: defining the units of this measure is up to us. The most frequently used ones
are called Fahrenheit, Celsius, and Kelvin, after their respective popularizers. So, does any particular choice of units
for temperature matter? Not really; any consistent scale will work. Consider the SI unit of length, the meter: it was
actually originally defined as one ten-millionth of the distance from the Equator to the North Pole through Paris.
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FIGURE 20.4
A Celsius thermometer.

This choice was entirely arbitrary in any universal sense, but it served physics completely adequately. Any other unit
of distance would have worked as well.

The slightly tricky aspect to scales of measure is that — to completely define one — in addition to picking the unit
size in terms of physical quantities (which is clear from above) one needs to set a zero level. When dealing with
length scales, the zero level is apparent: the complete absence of length. Because of this, 0 miles is the same as 0
feet and 0 meters and conversion between lengths is a matter of multiplication alone (why?). This seems obvious,
but let’s ask a more subtle question: would a length scale where a length of zero corresponds to, say 1 meter on the
SI scale, work consistently? The answer is that yes, it would, but it would be cumbersome in mathematical analysis;
there would be negative lengths: a rather counter-intuitive concept.

As we will later see, the properties of temperature also suggest an absolute zero for temperature. If all our
scales were set with that zero, conversion between temperature scales would be as easy as between length scales:
simple multiplication (miles to kilometers, meters to centimeters, etc). Unfortunately, the Celsius and Fahrenheit
scales were created before temperature was this well defined, so they assign the value of ’0 degrees’ to arbitrary
points, and, therefore, have negative temperatures and are cumbersome in mathematical analysis. Still, any two
temperature scales can be related through a linear relationship.

The Celsius scale — used throughout most of the world — establishes its unit, or degree Celsius, by defining the
temperature difference between the freezing and boiling point of water as 100 degrees Celsius. This is analogous to
the definition of meter above. However, it assigns a temperature of 0 to the freezing point of water; this temperature
is considerably higher than absolute zero.

Question
Find the conversion relationship between Celsius and Fahrenheit temperature scales. Explain how this is
different from converting miles to kilometers.

Thus, scientists generally use the Kelvin temperature scale, which has degree increments equal to the Celsius scale’s
(and so is pretty easy to recognize and interpret — at least for people outside the U.S.), but sets the value of zero
temperature to the absolute zero — the point at which all molecular motion ceases. On the Celsius scale, this
temperature is -273.15, so to convert between from degrees Celsius to Kelvins (frustratingly, while we call the
Celsius Scale units degrees Celsius, the Kelvin scale units are conventionally referred to simply as Kelvins) we us
the following:

Tk = Tc−273.15 [1]

For the rest of this chapter, temperature will is assumed to be measured in Kelvins.
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Empirical Gas Laws

Early experiments with various gases showed the following relationships to hold for a fixed amount (mass or
number of molecules) of gas:

Boyle’s Law (at constant temperature)

PV = k1 if T = Constant [2]

Gay-Lussac’s Law (at constant volume)

P
T

= k2 if V = Constant [3]

Charle’s Law (at constant pressure)

V
T

= k3 if P = Constant [4]

It should be first noted that these laws only hold for quasistatic processes, which are defined as processes where the
system is always at (or very near) thermal equilibrium. Informally, we may think of these as ’slow’, in the sense that
at any point in its path (see diagrams below), the system has time to reach thermal equilibrium. An important fact
about such processes is that they are reversible. All the processes we consider in this book are quasistratic.

Boyle’s law states that at constant temperature, the pressure and volume of a given amount of gas are inversely
related. If you squeeze a balloon, for instance, while keeping its temperature constant, its volume will decrease
and the gas will exert a greater amount of pressure than before to counterbalance the force you apply in addition to
atmospheric pressure.

Gay-Lussac’s law states that at constant volume, the pressure exerted by a gas is proportional to its temperature.
For instance, if the balloon pictures above were perfectly rigid (could not stretch beyond its current volume), by
increasing the temperature of the gas, you would increase the pressure inside, and the balloon would eventually
burst.

Charles’ Law states that at constant pressure, the volume of a gas is proportional to its temperature.

Avogadro’s Law

Finally, the Italian scientist Amedeo Avogadro determined experimentally that at constant temperature and pressure,
equal volumes of different gases contain equal numbers of molecules; in other words (if n is the number of
molecules of a gas):

V
n
= k4 if P = constant and T = constant [5]
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Combined Ideal Gas Law

By combining any two of the empirical gas laws above with Avogadro’s Law, we can derive the following relation-
ship, called the Ideal Gas Law and states that for n molecules of any ideal gas,

PV = nkT [6]

In this case, the constant k (a combination of the constants above) can be empirically measured, since, because of
the addition of Avogadro’s Law, it is identical for all ideal gases. Note that the constants in the empirical gas
laws are not necessarily identical for all ideal gases (why?). Its value is k = 1.38×10−23 J/K and it is known as the
Boltzmann Constant.

A different, though completely equivalent form of the ideal gas law is:

PV = NRT [7]

V is the volume, N is the number of moles of the gas (R is the universal gas constant = 8.315 J/K mol); this form is
often more useful for thermodynamics.

The relationship between n and N above, that is the number of molecules per mole of a substance, is called
Avogadro’s number. By comparing the two equations above, you can find the ratio is

n
N

= NA = 6.0×1023 [8]

.

Question
Assuming the atmosphere is isothermal (at constant temperature), what will happen to a perfectly elastic (no
elastic force, unlike the example above) gas balloon as it floats higher and higher?

Answer
A perfectly elastic balloon is in equilibrium when the gas pressure inside matches the air pressure outside. As
T = const, we can use Boyle’s law, that is, PV = const. As the balloon rises higher, the air pressure outside it
drops, and therefore the gas pressure inside must drop as well. By Boyle’s law, we determine that its volume
must increase.

Question
Explain why this result also holds for a balloon that is not perfectly elastic.

Diagrams of Quasistatic Gas Processes

Using the formulas above, it is possible to graphically display processes suggested by the laws above. For instance,
consider the diagram on the left below, which shows an ideal gas being heated and compressed on T −V axes. As
we will see later, it is often useful to graph such processes on a different set of axes, say P−V , as shown on the
right.
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FIGURE 20.5
Diagrams of the same process on different axes

Question
explain how we can draw the graph of the processes on the left on a P−V diagram.

Answer
During steps 1-2, the gas’s temperature is linearly proportional to its volume; therefore, by the combined ideal
gas law, the pressure must remain constant while the volume increases. During steps 2-3, the volume remains
constant, so by Gay-Lussac’s law, pressure must increase linearly with temperature. Finally, during steps 3-
4, volume falls linearly with increases in temperature. In other words, V = a− bT for some constants a,b.
Plugging in for T from the combined ideal gas law, we find that pressure is inversely proportional to volume
(derive the formula); that is, as volume decreases linearly, pressure grows along a hyperbola.

An Ideal Gas Thermometer, Absolute Zero

Finally, let’s look at the ideal gas law [7] for 1 mole of some gas that doesn’t deviate from the law, like helium gas,
for instance:

PV = RT 1 mole of ideal gas

This formula (alternatively, we could have used Charles’ Law), combined with the idea of the perfectly elastic
balloon above, suggests a way to measure temperature: at constant pressure, the volume of the balloon should be
directly proportional to its temperature, with the slope of the line equal to the ratio of the ideal gas constant and the
constant pressure. That is,
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V = T
R
P0

R,P0 constants

In standard conditions on earth, P0 ≈ 100,000Pa, so

V = T ×R×10−5

Equivalently, any two temperature-volume pairs can be related by the formula (why?):

T2 = T1
V2

V1

.

Such a setup might look like this:

FIGURE 20.6
What an ideal gas thermometer setup might look like

Therefore, a Kelvin scale ideal gas thermometer would function according to the following principle: bring the
balloon into thermal contact with a substance, wait for it to reach thermal equilibrium, measure its volume, and
convert that into temperature.

Alternatively, by finding the volume of the balloon at a temperature that corresponds to some easily observable
physical event (the melting point of water, for instance) we can now find any other temperature by multiplying the
original (in Kelvins) by the ratio of the volumes.

We can illustrate how one might use the relationship between volume and temperature for a Kelvin scale ideal
thermometer in the following manner:
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FIGURE 20.7
An ideal gas thermometer can be used to
easily find temperatures in Kelvins.

Absolute Zero

Before the advent of the Kelvin scale, scientists generally used the Celsius scale. They also used gas thermometers
which operated according to the same principles as the one described above. As shown below, a Celsius scale gas
thermometer also replicates the linear relationship between volume and temperature.

Because of practical limitations, they could not create temperatures near what we called absolute zero above, but
by extrapolating from observed regions, they found that hypothetically, an ideal gas would have zero volume at a
temperature of about −273 degrees Celsius. This is how the concept of absolute zero was first identified:

Questions

Since the gas laws as we introduced them use Kelvins, they could not have been used before the Kelvin scale
was around. Using formula [1], show how each of the gas laws and the combined law would be modified for
Celsius units. Indeed, this is how the empirical gas laws were first formulated. Explain the graph above and
how and why the switch to Kelvins might have occurred in terms of your answer to the question above.

Answer
The gas laws still hold in their general relationships; Boyle’s law, being temperature-independent, remain
unchanged. The other two laws are still linear relationships, but now there is an x -intercept (work out the
algebra). The Kelvin scale can be explained as a way to eliminate the x-intercept found in various temperature-
dependent phenomena, such as the gas laws. Also, note that — as suggested by the discussion on scales above
— converting between any two temperatures scales with zeroes calibrated to absolute zero will be as simple
as converting between length or time scales.

281

http://www.ck12.org


20.1. Thermodynamics www.ck12.org

FIGURE 20.8
A Celsius scale graph of volume vs temperature for an ideal gas.
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21.1 The Laws of Thermodynamics

Now that we have defined the terms that are important for an understanding of thermodynamics, we can state the
laws that govern relevant behavior. These laws, unlike Newton’s Laws or Gravity, are not based on new empirical
observations: they can be derived based on statistics and known principles, such as conservation of energy. By
understanding the laws of thermodynamics we can analyze heat engines, or machines that use heat energy to perform
mechanical work.

The First Law

The First Law of Thermodynamics is simply a statement of energy conservation applied to thermodynamics
systems: the change in the internal — for our purposes, this is the same as thermal — energy (denoted ∆U) of
a closed system is equal to the difference of net input heat and performed work. In other words,

∆U = Qnet −W [4] First Law

Note that this does not explain how the system will transform input heat to work, it simply enforces the energy
balance.

The Second Law

The Second Law of Thermodynamics states that the entropy of an isolated system will always increase until it
reaches some maximum value. Consider it in light of the simplified example in the entropy section: if we allow
the low entropy system to evolve, it seems intuitive collisions will eventually somehow distribute the kinetic energy
among the atoms.

The Second Law generalizes this intuition to all closed thermodynamic systems. It is based on the idea that in a
closed system, energy will be randomly exchanged among constituent particles — like in the simple example above
— until the distribution reaches some equilibrium (again, in any macroscopic system there will be an enormous
number of of atoms, degrees of freedom, etc). Since energy is conserved in closed systems, this equilibrium has to
preserve the original energy total. In this equilibrium, the Second Law — fundamentally a probabilistic statement
— posits that the energy will be distributed in the most likely way possible. This typically means that energy will be
distributed evenly across degrees of freedom.

This allows us to formulate the Second Law in another manner, specifically: heat will flow spontaneously from a
high temperature region to a low temperature region, but not the other way. This is just applying the thermodynamic
vocabulary to the logic of the above paragraph: in fact, this is the reason for the given definition of temperature.
When two substances are put in thermal contact (that is, they can exchange thermal energy), heat will flow from the
system at the higher temperature (because it has more energy in its degrees of freedom) to the system with lower
temperature until their temperatures are the same.

When a single system is out equilibrium, there will be a net transfer of energy from one part of it to another. In
equilibrium, energy is still exchanged among the atoms or molecules, but not on a system-wide scale. Therefore,
entropy places a limit on how much work a system can perform: the higher the entropy, the more even the distribution
of energy, the less energy available for transfer.
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21.2 Heat Engines

Heat engines transform input heat into work in accordance with the laws of thermodynamics. The mechanics of
various heat engines differ but their fundamentals are quite similar and involve the following steps:

1. Heat is supplied to the engine from some source at a higher temperature (Th).
2. Some of this heat is transferred into mechanical energy through work done (W ).
3. The rest of the input heat is transferred to some source at a lower temperature (Tc) until the system is in its

original state.

A single cycle of such an engine can be illustrated as follows:

In effect, such an engine allows us to ’siphon off’ part of the heat flow between the heat source and the heat sink.
The efficiency of such an engine is define as the ratio of net work performed to input heat; this is the fraction of heat
energy converted to mechanical energy by the engine:

e =
W
Qi

[5] Efficiency of a heat engine

If the engine does not lose energy to its surroundings (of course, all real engines do), then this efficiency can be
rewritten as

e =
Qi−Qo

Qi
[6] Efficiency of a lossless heat engine

A Carnot Engine, the most efficient heat engine possible, has an efficiency equal to

ec = 1− Tc

Th
[7] Efficiency of a Carnot (ideal) heat engine

where Tc and Th are the temperatures of the hot and cold reservoirs, respectively.
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Application to Gases

• The pressure of a gas is the force the gas exerts on a certain area. For a gas in a container, the amount of
pressure is directly related to the number and intensity of atomic collisions on a container wall.

• An ideal gas is a gas for which interactions between molecules are negligible, and for which the gas atoms or
molecules themselves store no potential energy. For an “ideal” gas, the pressure, temperature, and volume are
simply related by the ideal gas law.

• Atmospheric pressure (1 atm = 101,000 Pascals) is the pressure we feel at sea level due to the weight of the
atmosphere above us. As we rise in elevation, there is less of an atmosphere to push down on us and thus less
pressure.

• When gas pressure-forces are used to move an object then work is done on the object by the expanding gas.
Work can be done on the gas in order to compress it.

• Adiabatic process: a process that occurs with no heat gain or loss to the system in question.
• Isothermal: a process that occurs at constant temperature (i.e. the temperature does not change during the

process).
• Isobaric: a process that occurs at constant pressure.
• Isochoric: a process that occurs at constant volume.
• If you plot pressure on the vertical axis and volume on the horizontal axis, the work done in any complete

cycle is the area enclosed by the graph. For a partial process, work is the area underneath the curve, orP∆V .
• In a practical heat engine, the change in internal energy must be zero over a complete cycle. Therefore, over

a complete cycle W = ∆Q.
• The work done by a gas during a portion of a cycle = P∆V , note ∆V can be positive or negative.

Key Equations

Temperature and kinetic energy:

(
1
2

mv2)avg =
3
2

kT [8]

The average kinetic energy of atoms (each of mass m and average speed v) in a gas is proportional to the temperature
T of the gas, measured in Kelvin. This is just a restatement of the definition of temperature above. The Boltzmann
constant k is a constant of nature, equal to 1.38×10−23 J/K.

Definition of pressure:

P =
F
A

[9]

The pressure on an object is equal to the force pushing on the object divided by the area over which the force is
exerted. Unit for pressure are N/m2 (called Pascals)

The Ideal Gas Law:

PV = NkT [10]

An ideal gas is a gas where the atoms are treated as point-particles and assumed to never collide or interact with each
other. If you have N molecules of such a gas at temperature T and volume V , the pressure can be calculated from
this formula. Note that k = 1.38×10−23 J/K.
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Different form of the Ideal Gas Law:

PV = nRT [11]

V is the volume, n is the number of moles; R is the universal gas constant = 8.315 J/K−n; this is the most useful
form of the gas law for thermodynamics.
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21.3 Examples

Example 1

Question:A heat engine operates at a temperature of 650K. The work output is used to drive a pile driver, which is
a machine that picks things up and drops them. Heat is then exhausted into the atmosphere, which has a temperature
of 300K.

a) What is the ideal efficiency of this engine?

b.) The engine drives a 1200kg weight by lifting it 50m in 2.5sec. What is the engine’s power output?

c) If the engine is operating at 50% of ideal efficiency, how much power is being consumed?

d) The fuel the engine uses is rated at 2.7×106J/kg. How many kg of fuel are used in one hour?

Answer:

a) We will plug the known values into the formula to get the ideal efficiency.

η = 1− Tcold

T

hot=1-300K 650K=54%

b) To find the power of the engine, we will use the power equation and plug in the known values.

P =
W
t
=

Fd
t

=
mad

t
=

1200kg×9.8m/s2×50m
2.5sec

= 240kW
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c) First, we know that it is operating at 50% of ideal efficiency. We also know that the max efficiency of this engine
is 54%. So the engine is actually operating at

.5×54% = 27%

of 100% efficiency. So 240kW is 27% of what?

.27x = 240kW⇒ x =
240kW
.27

= 890kW
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21.4 Thermodynamics and Heat Engines Prob-
lem Set

1. Consider a molecule in a closed box. If the molecule collides with the side of the box, how is the force exerted
by the molecule on the box related to the momentum of the molecule? Explain conceptually, in words rather
than with equations.

2. If the number of molecules is increased, how is the pressure on a particular area of the box affected? Explain
conceptually, in words rather than with equations.

3. The temperature of the box is related to the average speed of the molecules. Use momentum principles to
relate temperature to pressure. Explain conceptually, in words rather than with equations.

4. What would happen to the number of collisions if temperature and the number of molecules remained fixed,
but the volume of the box increased? Explain conceptually, in words rather than with equations.

5. Use the reasoning in the previous four questions to qualitatively derive the ideal gas law.
6. Typical room temperature is about 300 K. As you know, the air in the room contains both O2 and N2 gases,

with nitrogen the lower mass of the two. If the average kinetic energies of the oxygen and nitrogen gases are
the same (since they are at the same temperature), which gas has a higher average speed?

7. Use the formula P = F/A to argue why it is easier to pop a balloon with a needle than with a finger (pretend
you don’t have long fingernails).

8. Take an empty plastic water bottle and suck all the air out of it with your mouth. The bottle crumples. Why,
exactly, does it do this?

9. You will notice that if you buy a large drink in a plastic cup, there will often be a small hole in the top of the
cup, in addition to the hole that your straw fits through. Why is this small hole necessary for drinking?

10. Suppose you were swimming in a lake of liquid water on a planet with a lower gravitational constant g than
Earth. Would the pressure 10 meters under the surface be the same, higher, or lower, than for the equivalent
depth under water on Earth? (You may assume that the density of the water is the same as for Earth.)

11. Why is it a good idea for Noreen to open her bag of chips before she drives to the top of a high mountain?
12. Explain, using basic physics conservation laws, why the following conditions would cause the ideal gas law

to be violated:

a. There are strong intermolecular forces in the gas.
b. The collisions between molecules in the gas are inelastic.
c. The molecules are not spherical and can spin about their axes.
d. The molecules have non-zero volume.

To the right is a graph of the pressure and volume of a gas in a container that has an adjustable volume. The lid
of the container can be raised or lowered, and various manipulations of the container change the properties of
the gas within. The points a,b, and c represent different stages of the gas as the container undergoes changes
(for instance, the lid is raised or lowered, heat is added or taken away, etc.) The arrows represent the flow of
time. Use the graph to answer the following questions.

13. Consider the change the gas undergoes as it transitions from point b to point c. What type of process is this?

a. adiabatic
b. isothermal
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c. isobaric
d. isochoric
e. entropic

14. Consider the change the gas undergoes as it transitions from point c to point a. What type of process is this?

a. adiabatic
b. isothermal
c. isobaric
d. isochoric
e. none of the above

15. Consider the change the gas undergoes as it transitions from point a to point b. Which of the following best
describes the type of process shown?

a. isothermal
b. isobaric
c. isochoric

16. How would an isothermal process be graphed on aP−V diagram?
17. Write a scenario for what you would do to the container to make the gas within undergo the cycle described

above. _____________________________________________________________
18. Calculate the average speed of N2 molecules at room temperature (300 K). (You remember from your

chemistry class how to calculate the mass (in kg) of an N2 molecule, right?)
19. How high would the temperature of a sample of O2 gas molecules have to be so that the average speed of the

molecules would be 10% the speed of light?
20. How much pressure are you exerting on the floor when you stand on one foot? (You will need to estimate the

area of your foot in square meters.)
21. Calculate the amount of force exerted on a 2 cm× 2 cm patch of your skin due to atmospheric pressure

(P0 = 101,000 Pa). Why doesn’t your skin burst under this force?
22. Use the ideal gas law to estimate the number of gas molecules that fit in a typical classroom.
23. Assuming that the pressure of the atmosphere decreases exponentially as you rise in elevation according to

the formula P = P0e
-h a ,where P_0 istheatmosphericpressureatsealevel (101,000 Pa) , h isthealtitudeinkmandaisthescale heighto f theatmosphere
(a ≈ 8.4 km).

a. Use this formula to determine the change in pressure as you go from San Francisco to Lake Tahoe, which
is at an elevation approximately 2 km above sea level.

b. If you rise to half the scale height of Earth’s atmosphere, by how much does the pressure decrease?
c. If the pressure is half as much as on sea level, what is your elevation?

24. At Noah’s Ark University the following experiment was conducted by a professor of Intelligent Design (formerly
Creation Science). A rock was dropped from the roof of the Creation Science lab and, with expensive equipment,
was observed to gain 100 J of internal energy. Dr. Dumb explained to his students that the law of conservation of
energy required that if he put 100 J of heat into the rock, the rock would then rise to the top of the building. When
this did not occur, the professor declared the law of conservation of energy invalid.

a. Was the law of conservation of energy violated in this experiment, as was suggested? Explain.
b. If the law wasn’t violated, then why didn’t the rock rise?

25. An instructor has an ideal monatomic helium gas sample in a closed container with a volume of 0.01 m3, a temper-
ature of 412 K, and a pressure of 474 kPa.

a. Approximately how many gas atoms are there in the container?
b. Calculate the mass of the individual gas atoms.
c. Calculate the speed of a typical gas atom in the container.
d. The container is heated to 647 K. What is the new gas pressure?
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e. While keeping the sample at constant temperature, enough gas is allowed to escape to decrease the
pressure by half. How many gas atoms are there now?

f. Is this number half the number from part (a)? Why or why not?
g. The closed container is now compressed isothermally so that the pressure rises to its original pressure.

What is the new volume of the container?
h. Sketch this process on a P-V diagram.

i. Sketch cubes with volumes corresponding to the old and new volumes.
26. A famous and picturesque dam, 80 m high, releases 24,000 kg of water a second. The water turns a turbine that

generates electricity.

a. What is the dam’s maximum power output? Assume that all the gravitational potential energy of the
water is converted into electrical energy.

b. If the turbine only operates at 30% efficiency, what is the power output?
c. How many Joules of heat are exhausted into the atmosphere due to the plant’s inefficiency?

27. A heat engine operates at a temperature of 650 K. The work output is used to drive a pile driver, which is a machine
that picks things up and drops them. Heat is then exhausted into the atmosphere, which has a temperature of 300 K.

a. What is the ideal efficiency of this engine?
b. The engine drives a 1200 kg weight by lifting it 50 m in 2.5 sec. What is the engine’s power output?
c. If the engine is operating at 50% of ideal efficiency, how much power is being consumed?
d. How much power is exhausted?
e. The fuel the engine uses is rated at 2.7×106 J/kg. How many kg of fuel are used in one hour?

28. Calculate the ideal efficiencies of the following sci-fi heat engines:

a. A nuclear power plant on the moon. The ambient temperature on the moon is 15 K. Heat input from
radioactive decay heats the working steam to a temperature of 975 K.

b. A heat exchanger in a secret underground lake. The exchanger operates between the bottom of a lake,
where the temperature is 4 C, and the top, where the temperature is 13 C.

c. A refrigerator in your dorm room at Mars University. The interior temperature is 282 K; the back of the
fridge heats up to 320 K.

29. How much external work can be done by a gas when it expands from 0.003 m3 to 0.04 m3 in volume under a constant
pressure of 400 kPa? Can you give a practical example of such work?

30. In the above problem, recalculate the work done if the pressure linearly decreases from 400 kPa to 250 kPa under
the same expansion. Hint: use a PV diagram and find the area under the line.

31. One mole (N = 6.02× 1023) of an ideal gas is moved through the following states as part of a heat engine. The
engine moves from state A to state B to state C, and then back again.

TABLE 21.1:

State Volume (m3) Pressure (atm) Temperature (K)
A 0.01 0.60
B 0.01 0.25
C 0.02 0.25

293

http://www.ck12.org


21.4. Thermodynamics and Heat Engines Problem Set www.ck12.org

(a) Draw a P-V diagram.

(b) Determine the temperatures in states A, B, and C and then fill out the table.

(c) Determine the type of process the system undergoes when transitioning from A to B and from B to C. (That is,
decide for each if it is isobaric, isochoric, isothermal, or adiabatic.)

(d) During which transitions, if any, is the gas doing work on the outside world? During which transitions, if any, is
work being done on the gas?

(e) What is the amount of net work being done by this gas?

32. A sample of gas is used to drive a piston and do work. Here’s how it works: The gas starts out at standard
atmospheric pressure and temperature. The lid of the gas container is locked by a pin. The gas pressure is
increased isochorically through a spigot to twice that of atmospheric pressure. The locking pin is removed
and the gas is allowed to expand isobarically to twice its volume, lifting up a weight. The spigot continues to
add gas to the cylinder during this process to keep the pressure constant. Once the expansion has finished, the
spigot is released, the high-pressure gas is allowed to escape, and the sample settles back to 1 atm. Finally,
the lid of the container is pushed back down. As the volume decreases, gas is allowed to escape through the
spigot, maintaining a pressure of 1 atm. At the end, the pin is locked again and the process restarts.

a. Draw the above steps on a P−V diagram.
b. Calculate the highest and lowest temperatures of the gas.

33. A heat engine operates through 4 cycles according to the PV diagram sketched below. Starting at the top left
vertex they are labeled clockwise as follows: a, b, c, and d.

a. From a−b the work is 75 J and the change in internal energy is 100 J; find the net heat.
b. From the a-c the change in internal energy is −20 J. Find the net heat from b-c.
c. From c-d the work is −40 J. Find the net heat from c-d-a.
d. Find the net work over the complete 4 cycles.
e. The change in internal energy from b-c-d is −180 J. Find:

i. the net heat from c-d ii. the change in internal energy from d-a iii. the net heat from d-a

34. A 0.1 sample mole of an ideal gas is taken from state A by an isochoric process to state B then to state C by
an isobaric process. It goes from state C to D by a process that is linear on a PV diagram, and then it goes
back to state A by an isobaric process. The volumes and pressures of the states are given below:
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TABLE 21.2:

state Volume in m3×10−3 Pressure in N/m2×105

A 1.04 2.50
B 1.04 4.00
C 1.25 4.00
D 1.50 2.50

(a) Find the temperature of the 4 states

(b) Draw a PV diagram of the process

(c) Find the work done in each of the four processes

(d) Find the net work of the engine through a complete cycle

(e) If 75 J of heat is exhausted in D-A and A-B and C-D are adiabatic, how much heat is inputted in B-C?

(f) What is the efficiency of the engine?

Answers to Selected Problems

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. .
9. .

10. .
11. .
12. .
13. .
14. .
15. .
16. .
17. .
18. 517 m/s
19. 1.15×1012 K
20. .
21. 40 N
22. ≈ 1028 molecules

1. 21,000 Pa
2. Decreases to 61,000 Pa
3. 5.8 km

1. No
2. allowed by highly improbable state. More likely states are more disordered.

1. 8.34×1023

2. 6.64×10−27 kg
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3. 1600 m/s
4. 744 kPa
5. 4.2×1020 or 0.0007 moles
6. 0.00785 m3

1. 1.9 MW
2. 0.56 MW
3. 1.3 Mw

1. 54%
2. 240 kW
3. 890 kW
4. 590 kW
5. 630 kg

1. 98%
2. 4.0%
3. 12%

23. 14800 J
24. 12,000 J
25. (b) 720 K,300 K,600 K (c) isochoric; isobaric (d) C to A; B−C (e) 0.018 J
26. (b) 300 K,1200 K

1. 1753 J
2. −120 J
3. 80 J
4. 35 J
5. −100 J,80 J,80 J
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22.1 Microscopic Description of an Ideal Gas

Evidence for the kinetic theory

Why does matter have the thermal properties it does? The basic answer must come from the fact that matter is made
of atoms. How, then, do the atoms give rise to the bulk properties we observe? Gases, whose thermal properties are
so simple, offer the best chance for us to construct a simple connection between the microscopic and macroscopic
worlds.

A crucial observation is that although solids and liquids are nearly incompressible, gases can be compressed, as when
we increase the amount of air in a car’s tire while hardly increasing its volume at all. This makes us suspect that the
atoms in a solid are packed shoulder to shoulder, while a gas is mostly vacuum, with large spaces between molecules.
Most liquids and solids have densities about 1000 times greater than most gases, so evidently each molecule in a gas
is separated from its nearest neighbors by a space something like 10 times the size of the molecules themselves.

If gas molecules have nothing but empty space between them, why don’t the molecules in the room around you just
fall to the floor? The only possible answer is that they are in rapid motion, continually rebounding from the walls,
floor and ceiling. In chapter 2, we have already seen some of the evidence for the kinetic theory of heat, which
states that heat is the kinetic energy of randomly moving molecules. This theory was proposed by Daniel Bernoulli
in 1738, and met with considerable opposition, because there was no precedent for this kind of perpetual motion.
No rubber ball, however elastic, rebounds from a wall with exactly as much energy as it originally had, nor do we
ever observe a collision between balls in which none of the kinetic energy at all is converted to heat and sound. The
analogy is a false one, however. A rubber ball consists of atoms, and when it is heated in a collision, the heat is a
form of motion of those atoms. An individual molecule, however, cannot possess heat. Likewise sound is a form of
bulk motion of molecules, so colliding molecules in a gas cannot convert their kinetic energy to sound. Molecules
can indeed induce vibrations such as sound waves when they strike the walls of a container, but the vibrations of the
walls are just as likely to impart energy to a gas molecule as to take energy from it. Indeed, this kind of exchange of
energy is the mechanism by which the temperatures of the gas and its container become equilibrated.

Pressure, volume, and temperature

A gas exerts pressure on the walls of its container, and in the kinetic theory we interpret this apparently constant
pressure as the averaged-out result of vast numbers of collisions occurring every second between the gas molecules
and the walls. The empirical facts about gases can be summarized by the relation

PV ∝ nT, [ideal gas]

which really only holds exactly for an ideal gas. Here n is the number of molecules in the sample of gas.

The proportionality of volume to temperature at fixed pressure was the basis for our definition of temperature.

Pressure is proportional to temperature when volume is held constant. An example is the increase in pressure in a
car’s tires when the car has been driven on the freeway for a while and the tires and air have become hot.

We now connect these empirical facts to the kinetic theory of a classical ideal gas. For simplicity, we assume that
the gas is monoatomic (i.e., each molecule has only one atom), and that it is confined to a cubical box of volume V
, with L being the length of each edge and A the area of any wall. An atom whose velocity has an x component vx

will collide regularly with the left-hand wall, traveling a distance 2L parallel to the x axis between collisions with
that wall. The time between collisions is ∆t = 2L/vx, and in each collision the x component of the atom’s momentum
is reversed from -mvx to mvx. The total force on the wall is

F =
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+

+. . . [monoatomic ideal gas] ,

where the indices 1, 2, . . . refer to the individual atoms. Substituting ∆px,i = 2mvx,i and ∆ti = 2L/vx,i, we have

F =

+

[monoatomic ideal gas] .

The quantity mvx,i
2 is twice the contribution to the kinetic energy from the part of the atom’s center of mass motion

that is parallel to the x axis. Since we’re assuming a monoatomic gas, center of mass motion is the only type of
motion that gives rise to kinetic energy. (A more complex molecule could rotate and vibrate as well.) If the quantity
inside the sum included the y and z components, it would be twice the total kinetic energy of all the molecules. By
symmetry, it must therefore equal 2/3 of the total kinetic energy, so

F =

[monoatomic ideal gas] .

Dividing by A and using AL = V , we have

P =

[monoatomic ideal gas] .

This can be connected to the empirical relation PV ∝ nT if we multiply by V on both sides and rewrite KEtotal as
nKEav, where KEav is the average kinetic energy per molecule:

PV =

nKEav monoatomic ideal gas

For the first time we have an interpretation for the temperature based on a microscopic description of matter: in a
monoatomic ideal gas, the temperature is a measure of the average kinetic energy per molecule. The proportionality
between the two is KEav= (3/2)kT, where the constant of proportionality k, known as Boltzmann’s constant, has a
numerical value of 1.38 x 10−23 J/K. In terms of Boltzmann’s constant, the relationship among the bulk quantities
for an ideal gas becomes

PV = nkT , [ideal gas]

which is known as the ideal gas law. Although I won’t prove it here, this equation applies to all ideal gases, even
though the derivation assumed a monoatomic ideal gas in a cubical box. (You may have seen it written elsewhere
as PV = NRT, where N = U/NA is the number of moles of atoms, R = kNA, and NA = 6.0 X 1023, called Avogadro’s
number, is essentially the number of hydrogen atoms in 1 g of hydrogen.)
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23.1 The Big Ideas

Einstein believed that the laws of physics do not depend on the how fast you are moving through space: every
reference frame sees the same world of physics. In other words, if you are on a moving train and drop a ball or if you
are standing on a farm and drop a ball, the physics that describe the motion of that ball will be the same. Einstein
realized that the speed of light, c, should depend only on the laws of physics that describe light as electromagnetic
radiation. Therefore, Einstein made the bold assertion that light always travels at the same speed, no matter how
fast you are moving with respect to the source of light. Consider for a moment how counterintuitive this concept
really is. This is the theoretical underpinning of Einstein’s theory of Special Relativity, one of the most successfully
predictive theories of physics ever formulated.

The most important consequence of this new understanding is that our intuition that time moves at the same rate
for everyone (whether standing still or moving at a fast speed) is WRONG. In fact, the rate at which time passes
depends on your speed. Since Einstein’s work in the early part of the 20th century, this fact has been demonstrated
many times by experiments in particle accelerators and through the use of atomic clocks aboard fast moving jet
airplanes. The effect is only noticeable at extremely fast speeds, thus the normal laws of motion apply in all but the
most extreme cases.

Einstein was finally led to believe that the very fabric of space and time must have a more active and influential role
in the laws of physics than had previously been believed. Eventually, Einstein became convinced that gravity itself
amounted to no more than a curvature in spacetime. This theory is called General Relativity.

Key Concepts

• The speed of light will always be measured to be the same (about 3× 108 m/s) regardless of your motion
towards or away from the source of light.

• In order for this bizarre fact to be true, we must reconsider what we mean by ’space,’ ’time,’ and related
concepts, such as the concept of ’simultaneous’ events. (Events which are seen as simultaneous by one
observer might appear to occur at different times to an observer moving with a different velocity. Note that
both observers see the same laws of physics, just a different sequence of events.)

• Clocks moving towards or away from you run more slowly, and objects moving towards or away from you
shrink in length. These are known as Lorentz time dilation and length contraction; both are real, measured
properties of the universe we live in.

• If matter is compressed highly enough, the curvature of spacetime becomes so intense that a black hole forms.
Within a certain distance of a black hole, called an event horizon, nothing can escape the intense curvature,
not even light. No events which occur within the horizon can have any effect, ever, on events which occur
outside the horizon.

Key Equations

β =
v
c

An object moving with speed v has a dimensionless speed β calculated by dividing the speed v by the speed of light
(c = 3×108 m/s). 0≤ β≤ 1.
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γ =
1√

1−β2

The dimensionless Lorentz “gamma” factor γ can be calculated from the speed, and tells you how much time dilation
or length contraction there is. 1≤ γ≤ ∞.

TABLE 23.1:

Object Speed (km/sec) β Lorentz γ Factor
Commercial Airplane 0.25 8×10−7 1.00000000000
Space Shuttle 7.8 3×10−5 1.00000000034
UFO ? 150,000 0.5 1.15
Electron at the Stanford
Linear Accelerator

∼ 300,000 0.9999999995 ∼ 100,000

L′ =
L
γ

If you see an object of lengthL moving towards you at a Lorentz gamma factor γ, it will appear shortened (contracted)
in the direction of motion to new length L .

T ′ = γT

If a moving object experiences some event which takes a period of time T (say, the amount of time between two
heart beats), and the object is moving towards or away from you with Lorentz gamma factor γ, the period of time T ′

measured by you will appear longer.

Rs =
2Gm

c2

The radius of the spherical event horizon of a black hole is determined by the mass of the black hole and fundamental
constants. A typical black hole radius is about 3 km.

mr = m0γ

The mass of an object moving at relativistic speeds increases by a factor of γ.

E = mc2

The potential energy of mass is equal to mass times the speed of light squared.
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23.2 Relativity Example

Question: The muon particle (µ−) has a half-life of 2.20× 10−6s. Most of these particles are produced in the
atmosphere, a good 5-20km above Earth, yet we see them all the time in our detectors here on Earth. In this problem
you will find out how it is possible that these particles make it all the way to Earth with such a short lifetime.

a) Calculate how far muons could travel before half decayed, without using relativity and assuming a speed of 0.999c
(i.e. 99.9% of the speed of light)

b) Now calculate γ for this muon.

c) Calculate its ’relativistic’ half-life.

d) Now calculate the distance before half decayed using relativistic half-life and express it in kilometers. (This has
been observed experimentally. This first experimental verification of time dilation was performed by Bruno Rossi at
Mt. Evans, Colorado in 1939.)

Answer:

a) To calculate the distance that the muon particle could travel we will use the equation for distance and then plug in
the known values to get the answer.

d = v× t = (.999×3×108m/s)× (2.20×10−6s) = 659.34m

b) To solve for γ, we must first solve for β.

β =
v
c
=

.999×3×108m/s
3×108m/s

= .999

Now we can solve for γ.

γ =
1√

1−β2
=

1√
1− .9992

= 22.4

c) To calculate the muon particle’s relativistic half-life, we will use the γ value we calculated in part b) and the
equation for determining relativistic half-life.

T ′ = γT = 22.4×2.20×10−6s = 4.92×10−5

d) To calculate the distance the muon particle can travel we will use the same distance equation but we will use the
new half-life instead of the non-relativistic half-life.

d = vt = (.999×3×108m/s)(4.92×10−5s) = 14,700m

Now we will convert this into km.

14700m× 1km
1000m

= 14.7km
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23.3 Relativity Problem Set

1. Suppose you discover a speedy subatomic particle that exists for a nanosecond before disintegrating. This
subatomic particle moves at a speed close to the speed of light. Do you think the lifetime of this particle
would be longer or shorter than if the particle were at rest?

2. What would be the Lorentz gamma factor γ for a space ship traveling at the speed of light c? If you were in
this space ship, how wide would the universe look to you?

3. Suppose your identical twin blasted into space in a space ship and is traveling at a speed of 0.100 c. Your twin
performs an experiment which he clocks at 76.0 minutes. You observe this experiment through a powerful
telescope; what duration does the experiment have according to your clock? Now the opposite happens and
you do the 76.0 minute experiment. How long does the traveling twin think the experiment lasted?

4. An electron is moving to the east at a speed of 1.800×107 m/s. What is its dimensionless speed β? What is
the Lorentz gamma factor γ?

5. What is the speed v of a particle that has a Lorentz gamma factor γ = 1.05?
6. How fast would you have to drive in your car in order to make the road 50% shorter through Lorentz

contraction?
7. The muon particle (µ−) has a half-life of 2.20×10−6 s. Most of these particles are produced in the atmosphere,

a good 5− 20 km above Earth, yet we see them all the time in our detectors here on Earth. In this problem
you will find out how it is possible that these particles make it all the way to Earth with such a short lifetime.

a. Calculate how far muons could travel before half decayed, without using relativity and assuming a speed
of 0.999 c (i.e. 99.9% of the speed of light)

b. Now calculate γ, for this muon.
c. Calculate its ’relativistic’ half-life.

a. Now calculate the distance before half decayed using relativistic half-life and express it in kilometers.
(This has been observed experimentally. This first experimental verification of time dilation was per-
formed by Bruno Rossi at Mt. Evans, Colorado in 1939.)

8. Calculate the radius of the event horizon of a super-massive black hole (SMBH) with a mass 200,000,000
times the mass of our Sun. (Unless you have it memorized, you will have to look up the mass of the Sun in
kg.)

9. If an electron were “really” a black hole, what would the radius of its event horizon be? Is this a measurable
size?

10. An alien spaceship moves past Earth at a speed of .15 c with respect to Earth. The alien clock ticks off 0.30
seconds between two events on the spaceship. What will earthbound observers determine the time interval to
be?

11. In 1987 light reached our telescopes from a supernova that occurred in a near-by galaxy 160,000 light years
away. A huge burst of neutrinos preceded the light emission and reached Earth almost two hours ahead of the
light. It was calculated that the neutrinos in that journey lost only 13 minutes of their lead time over the light.

a. What was the ratio of the speed of the neutrinos to that of light?
b. Calculate how much space was Lorentz-contracted form the point of view of the neutrino.
c. Suppose you could travel in a spaceship at that speed to that galaxy and back. It that were to occur the

Earth would be 320,000 years older. How much would you have aged?

12. An electron moves in an accelerator at 95% the speed of light. Calculate the relativistic mass of the electron.
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13. Enterprise crew members notice that a passing Klingon ship moving 0.8 c with respect to them is engaged in
weapons testing on board. At the closest point of contact the Klingons are testing two weapons: one is a laser,
which in their frame moves at c; the other is a particle gun, which shoots particles at 0.6 c in the Klingon
frame. Both weapons are pointed in the same line as the Klingon ship is moving. Answer the following two
questions choosing one of the following options: A. V < 0.6 c B. 0.6 c < V < 0.8 c C. 0.8 c < V < c D.
c < V < 1.4 c E. V > 1.4 c F. V = c

a. Question 1: What speed, V , does the Enterprise measure the laser gun to achieve with respect to the
Enterprise?

b. Question 2: What speed, V , does the Enterprise measure the particle gun to achieve with respect to the
Enterprise?

14. How much energy is produced by a .5 kilogram softball?
15. The isotope of silicon Si31 has an atomic mass of 30.975362 amu. It can go through beta radioactivity,

producing P31 with a mass of 30.973762 amu.

a. Calculate the total energy of the beta particle emitted, assuming the P31 nucleus remains at rest relative
to the Si31 nucleus after emission.

b. Another possibility for this isotope is the emission of a gamma ray of energy 1.2662 Mev. How much
kinetic energy would the P31 nucleus gain?

c. What is the frequency and wavelength of the gamma ray?

a. What is the rebound velocity of the P31 nucleus in the case of gamma ray emission?

Answers to Selected Problems

1. longer
2. γ = ∞, the universe would be a dot
3. .
4. .
5. γ = 1.002
6. 9.15×107 m/s
7. a. 0.659 km b. 22.4 c. 4.92×10−5 m/s d. 14.7 km
8. 2900 m
9. 1.34×10−57 m

10. 0.303 s
11. .
12. 2.9×10−30kg, yes harder to accelerate
13. a. f b. c
14. 4.5×1016 J;1.8×1013 softballs
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15. a. 1.568×10−13 J b. 3.04×106 J
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24.1 The Big Idea

The nuclei of atoms are affected by three forces: the strong nuclear force, which causes protons and neutrons to bind
together, the electric force, which is manifested by repulsion of the protons and tends to rip the nucleus apart, and
the weak nuclear force, which causes neutrons to change into protons and vice versa.

The strong force predominates and can cause nuclei of complex atoms with many protons to be stable. The electric
force of repulsion is responsible for fission, the breaking apart of nuclei, and therefore also for atom bombs and
nuclear power. A form of fission where a helium nucleus is a product, is called alpha radiation. The actions of
the weak force give rise to beta radiation. A change in nuclear energy can also give rise to gamma radiation, high
energy electromagnetic waves. Particles that emit alpha radiation, beta radiation, and gamma radiation go through
the process of radioactive decay, which causes the heating of the molten core of the earth, and has even played a
role in the mutations in our evolutionary history. Fission and fusion, the latter occurring when light nuclei combine
to form new elements, are accompanied by copious amounts of gamma radiation. These processes often produce
radioactive nuclei; in nature these radioactive nuclei were forged in the explosive deaths of ancient stars.
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24.2 Key Concepts

• Atomic symbols like A
ZX are interpreted in the following way: X is the symbol for the element involved. For

example, U is the symbol for the element uranium. Z is the atomic number. A is the atomic mass number, the
total number of nucleons (protons and neutrons). A would be 235 for uranium.

• Some of the matter on Earth is unstable and undergoing nuclear decay.
• When mass is lost during radioactive decay, the energy released is given by Einsten’s famous formula: E =

∆mc2

• Alpha decay is the emission of a helium nucleus and causes the product to have an atomic number 2 lower
than the original and an atomic mass number 4 lower than the original.

• Beta minus decay is the emission of an electron, causing the product to have an atomic number 1 greater than
the original

• Beta plus decay is the emission of a positron, causing the product to have an atomic number 1 lower than the
original.

• When an atomic nucleus decays, it does so by releasing one or more particles. The atom often (but not always)
turns into a different element during the decay process. The amount of radiation given off by a certain sample
of radioactive material depends on the amount of material, how quickly it decays, and the nature of the decay
product. Big, rapidly decaying samples are most dangerous.

• The measure of how quickly a nucleus decays is given by the half-life of the nucleus. One half-life is the
amount of time it will take for half of the radioactive material to decay.

• The type of atom is determined by the atomic number (i.e. the number of protons). The atomic mass of an
atom is approximately the number of protons plus the number of neutrons. Typically, the atomic mass listed
in a periodic table is an average, weighted by the natural abundances of different isotopes.

• The atomic mass number in a nuclear decay process is conserved. This means that you will have the same
total atomic mass number on both sides of the equation. Charge is also conserved in a nuclear process.

• It is impossible to predict when an individual atom will decay; one can only predict the probability. However,
it is possible to predict when a portion of a macroscopic sample will decay extremely accurately because the
sample contains a vast number of atoms.

• The nuclear process is largely random in direction. Therefore, radiation strength decreases with distance by
the inverse square of the distance (the 1/r2 law, which also holds for gravity, electric fields, light intensity,
sound intensity, and so on.)
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24.3 Decay Equations

Nuclear decay is often measured in terms of half lives. During the span of one half life, the amount of a decaying
substance decreases by half. Therefore, after k half lives, the amount of a substance starting at N0 left is

N(k) = N0× 1
2

k

If we need to know the amount left after some time t, we first need to see find many half lives transpired (this will
be given by t

tH
, then use the formula above:

N(t) = N0× 1
2

t
tH

If on the other hand, we know how much of a substance is left and would like to find how much time has transpired,
we can solve the equation above for t (left to reader):

t = tH
ln N

N0

ln 1
2

This equation is used in radioactive dating:

Question: The half-life of 239Pu is 24,119 years. You have 31.25 micrograms left, and the sample you are studying
started with 2000 micrograms. How long has this rock been decaying?

Answer: We will use the equation for time and simply plug in the known values.

t = tH
ln N

N0

ln 1
2

= 24119y
ln 31.25µg

2000µg

ln 1
2

= 144,700years

Radioactive carbon dating is a technique that allows scientists to determine the era in which a sample of biological
material died. A small portion of the carbon we ingest every day is actually the radioactive isotope 14C rather than
the usual 12C. Since we ingest carbon every day until we die (we do this by eating plants; the plants do it through
photosynthesis), the amount of 14C in us should begin to decrease from the moment we die. By analyzing the ratio
of the number of 14C to 12C atoms in dead carbon-based life forms (including cloth made from plants!) and using
the technique illustrated above, we can determine how long ago the life form died.
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24.4 Key Applications

Alpha Decay

• Alpha decay is the process in which an isotope releases a helium nucleus (2 protons and 2 neutrons, 4
2 He) and

thus decays into an atom with two less protons.

Example: 232
90 Th→ 228

88 Ra+ 4
2 He

Beta Decay

• Beta decay is the process in which one of the neutrons in an isotope decays, leaving a proton, electron and
anti-neutrino. As a result, the nucleus decays into an atom that has the same number of nucleons, with one
neutron replaced by a proton. (Beta positive decay is the reverse process, in which a proton decays into a
neutron, anti-electron and neutrino.)

Example: 14
6 C→ 14

7 N+ 0
−1 e−+ v

311

http://www.ck12.org


24.4. Key Applications www.ck12.org

Gamma Decay

• Gamma decay is the process in which an excited atomic nucleus kicks out a photon and releases some of its
energy. The makeup of the nucleus doesn’t change, it just loses energy. (It can be useful to think of this as
energy of motion – think of a shuddering nucleus that only relaxes after emitting some light.)

Example: 137
56 Ba∗→ 137

56 Ba+y

Fission and Fusion

• Fission is the process in which an atomic nucleus breaks apart into two less massive nuclei. Energy is released
in the process in many forms, heat, gamma rays and the kinetic energy of neutrons. If these neutrons collide
with nuclei and induce more fission, then a runaway chain reaction can take place. Fission is responsible for
nuclear energy and atom-bomb explosions: the fission of uranium acts as a heat source for the Earth’s molten
interior.

Example: 1 n+ 235 U→ 141 Ba+ 92 Kr+31 n

• Fusion is the process in which two atomic nuclei fuse together to make a single nucleus. Energy is released in
the form of nuclear particles, neutrons, and gamma-rays.

Example: 3
1 H+ 2

1 H→ 4
2 He+ 1

0 n+y
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24.5 Radioactivity and Nuclear Physics Problem
Set

1. After 6 seconds, the mass of a sample of radioactive material has reduced from 100 grams to 25 grams. Its
half-life must be

a. 1 s
b. 2 s
c. 3 s

a. 4 s
b. 6 s

2. Which of the following is true for the following reaction? 236 U→ 90 Sr+ 143 Xe+31 n

a. This is a fission reaction.
b. This is a fusion reaction.
c. This is not a valid reaction, because the equations don’t balance.

3. For any radioactive material, its half-life. . .

a. . . . first decreases and then increases.
b. . . . first increases and then decreases.
c. . . . increases with time.

a. . . . decreases with time.
b. . . . stays the same.

4. If the half-life of a substance is 5 seconds, it ceases to be radioactive (i.e. it ceases emitting particles), . . .

a. . . . after 5 seconds.
b. . . . after 10 seconds
c. . . . after 20 seconds.

a. . . . after a very long time.

5. You detect a high number of alpha particles every second when standing a certain distance from a radioactive
material. If you triple your distance from the source, the number of alpha particles you detect will decrease.
By what factor will it decrease?

a.
√

3
b. 3
c. 9

a. 27
b. It will stay the same.

6. You have 5 grams of radioactive substance A and 5 grams of radioactive substance B. Both decay by emitting
alpha-radiation, and you know that the higher the number of alpha-particles emitted in a given amount of time,
the more dangerous the sample is. Substance A has a short half-life (around 4 days or so) and substance B has
a longer half-life (around 10 months or so).

a. Which substance is more dangerous right now? Explain.
b. Which substance will be more dangerous in two years? Explain.

7. Write the nuclear equations A→ B+C for the following reactions.

a. The alpha decay of 219Ra.
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b. The beta decay of 158Eu.
c. The beta decay of 53Ti.

a. The alpha decay of 211Bi.

8. A certain radioactive material has a half-life of 8 minutes. Suppose you have a large sample of this material,
containing 1025 atoms.

a. How many atoms decay in the first 8 minutes?
b. Does this strike you as a dangerous release of radiation? Explain.
c. How many atoms decay in the second 8 minutes?

a. What is the ratio of the number of atoms that decay in the first 8 minutes to the number of atoms that
decay in the second 8 minutes?

b. How long would you have to wait until the decay rate drops to 1% of its value in the first 8 minutes?

9. There are two equal amounts of radioactive material. One has a short half-life and the other has a very long
half-life. If you measured the decay rates coming from each sample, which would you expect to have a higher
decay rate? Why?

10. Hidden in your devious secret laboratory are 5.0 grams of radioactive substance A and 5.0 grams of radioactive
substance B. Both emit alpha-radiation. Quick tests determine that substance A has a half-life of 4.2 days and
substance B has a half-life of 310 days.

a. How many grams of substance A and how many grams of substance B will you have after waiting 30
days?

b. Which sample (A or B) is more dangerous at this point (i.e., after the 30 days have passed)?

11. The half-life of a certain radioactive material is 4 years. After 24 years, how much of a 75 g sample of this
material will remain?

12. The half life of 53Ti is 33.0 seconds. You begin with 1000 g of 53Ti. How much is left after 99.0 seconds?
13. You want to determine the half-life of a radioactive substance. At the moment you start your stopwatch, the

radioactive substance has a mass of 10 g. After 2.0 minutes, the radioactive substance has 0.5 grams left.
What is its half-life?

14. The half-life of 239Pu is 24,119 years. You have 31.25 micrograms left, and the sample you are studying
started with 2000 micrograms. How long has this rock been decaying?

15. A certain fossilized plant is 23,000 years old. Anthropologist Hwi Kim determines that when the plant died,
it contained 0.250 g of radioactive 14C(tH = 5730 years). How much should be left now?

16. Jaya unearths a guinea pig skeleton from the backyard. She runs a few tests and determines that 99.7946%
of the original 14C is still present in the guinea pig’s bones. The half-life of 14C is 5730 years. When did the
guinea pig die?

17. You use the carbon dating technique to determine the age of an old skeleton you found in the woods. From the
total mass of the skeleton and the knowledge of its molecular makeup you determine that the amount of 14C
it began with was 0.021 grams. After some hard work, you measure the current amount of 14C in the skeleton
to be 0.000054 grams. How old is this skeleton? Are you famous?

18. Micol had in her lab two samples of radioactive isotopes: 151Pm with a half-life of 1.183 days and 134 Ce with
a half-life of 3.15 days. She initially had 100 mg of the former and 50 mg of the latter.

a. Do a graph of quantity remaining (vertical axis) vs. time for both isotopes on the same graph.
b. Using the graph determine at what time the quantities remaining of both isotopes are exactly equal and

what that quantity is.
c. Micol can detect no quantities less than 3.00 mg. Again, using the graph, determine how long she will

wait until each of the original isotopes will become undetectable.

a. The Pm goes through β− decay and the Ce decays by means of electron capture. What are the two
immediate products of the radioactivity?
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b. It turns out both of these products are themselves radioactive; the Pm product goes through β− decay
before it becomes stable and the Ce product goes through β+ decay before it reaches a stable isotope.
When all is said and done, what will Micol have left in her lab?

Answers to Selected Problems

1. .
2. .
3. .
4. .
5. .
6. a. Substance A decays faster than B b. Substance B because there is more material left to decay.
7. a. 219

88Ra→215
86Rn+4

2He b. 158
63Eu→158

64Gd+0
−1e− c. 53

22Ti→53
23Va+0

−1e− d. 211
83Bi→207

81Tl+4
2He

8. a. 5×1024 atoms b. Decay of a lot of atoms in a short period of time c. 2.5×1024 atoms d. 1
2 e. 26.6 minutes

9. The one with the short half life, because half life is the rate of decay.
10. a. Substance B = 4.6 g and substance A = 0.035 g b. substance B
11. 1.2 g
12. 125 g
13. 0.46 minutes
14. t = 144,700 years
15. 0.0155 g
16. 17 years
17. 49,000 years
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25.1 The Big Idea

All matter is composed of fundamental building blocks, called the elementary particles. These building blocks are
much smaller than an atom, and so are sometimes referred to as subatomic particles. Particles interact with one
another according to a set of laws. There are two types of particles: force particles (fermions) and matter particles
(bosons). What sets them apart is an intrinsic property called ’spin’. The set of particles and the laws that govern
their interactions are called the Standard Model. The Standard Model is very powerful and can predict particle
interactions to amazing accuracy.

The fifth of the five conservation laws is called CPT symmetry. CPT is a symmetry between matter and anti-matter.
The law states that if you reverse the spatial coordinates of a particle, change it from matter to anti-matter, and
reverse it in time the new object is now indistinguishable from the original. More on the fifth conservation law in
the Feynman Diagram’s chapter.

317

http://www.ck12.org


25.2. Matter www.ck12.org

25.2 Matter

• Particles can be grouped into two camps: fermions and bosons. Typically matter is made up of fermions, while
interactions (which lead to forces of nature such as gravity and electromagnetism) occur through the exchange
of particles called bosons. (There are exceptions to this.) Electrons and protons are fermions, while photons
(light particles) are bosons.

• Fermions (matter particles) can be broken into two groups: leptons and quarks. Each of these groups comes
in three families.

• The first family of leptons consists of the electron and the electron neutrino. The second family consists of the
muon and the muon neutrino. The third consists of the tau and the tau neutrino. Particles in each successive
family are more massive than the family before it.

• The first family of quarks consists of the up and down quark. The second family consists of the charm and
strange quarks. The third family consists of the top and bottom quarks.

• Up and down quarks combine (via the strong force) to form nucleons. Two ups and a down quark make a
proton, while an up quark and two down quarks make a neutron. Different combinations of quarks are called
mesons. In reality, most of the mass of a proton, neutron, etc. is made up of binding energy and virtual
particles.

• Particles differ in their mass, their electric charge, their family (in the case of leptons), and their “spin.” Spin
is a quantum mechanical concept that is best explained as a magnetic moment intrinsic to the particle and
manifested as angular momentum.
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25.3 Interactions

• There are four fundamental forces in nature. From weakest to strongest, these are the gravitational force, the
weak nuclear force, the electromagnetic force, and the strong nuclear force.

• Each fundamental force is transmitted by its own boson(s): for gravity, they are called gravitons; for the weak
nuclear force, they are called W−, W+, and Z◦ bosons; for the electromagnetic force, they are called photons;
and for the strong nuclear force, they are called gluons.

• In summary, the building blocks of matter and the interactions between matter consist of the following
fundamental particles :

TABLE 25.1:

Fermions Fermions
Leptons Quarks
electron up
electron neutrino down
muon strange
muon neutrino charm
tau top
tau neutrino bottom

TABLE 25.2:

Bosons Bosons
Force Transmitted Associated Boson
gravity graviton
electromagnetic photon
weak W−, W+, and Z◦

strong gluons
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25.4 Rules

• For any interaction between particles, the five conservation laws (energy, momentum, angular momentum,
charge, and CPT) must be followed. For instance, the total electric charge must always be the same before
and after an interaction.

• Electron lepton number is conserved. This means that the total number of electrons plus electron neutrinos
must be the same before and after an interaction. Similarly, muon lepton number and tau lepton number are
also (separately) conserved. Note that matter gets lepton number of +1 and antimatter has lepton number of
−1.

• Total quark number is conserved. Unlike leptons, however, this total includes all families. Again matter
particles get quark number of +1 and antimatter −1.

• Photons can only interact with objects that have electric charge. This means that particles without charge
(such as the electron neutrino) can never interact with photons.

• The strong nuclear force can only act on quarks. This means that gluons (the particle that carries the strong
nuclear force) can only interact with quarks, or other gluons.

• The gravitational force can only act on objects with energy, and hence any object with mass.
• The weak nuclear force interacts with both quarks and leptons. However, the weak force is carried by any of

three particles, called intermediate vector bosons: W−, W+, and Z◦. Note that the W particles carry electric
charge. This means you have to be more careful in making sure that any weak force interaction conserves
electric charge.

• Any interaction which obeys all of these rules, and also obeys the usual rules of energy and momentum con-
servation, is allowed. Due to the randomness of particle interactions, any allowed interaction must eventually
happen and thus has a non-zero probability of happening.

Antimatter

• In addition to all of this, there is a further complication: each type of particle that exists (such as an electron
or an up quark) has an antiparticle. Antiparticles are strange beasts: they have the same properties as their
corresponding particles (mass, size, interactions) but their quantum numbers are exactly reversed electric
charge, electron, muon, or tau lepton number, and quark number).

• There are two ways to denote something as an antiparticle. The most common is to draw a horizontal line
above the thing. So, for instance, the antiparticle of the up quark is the anti-up quark:

u ū

up quark anti-up quark

• For charged leptons, you can merely switch the charge. So, for instance, an electron has negative charge and
is written e− , while its antiparticle, the anti-electron (also called a positron) is written e+.

e− e+

electron anti-electron (aka positron)

• Particles and antiparticles annihilate each other, and convert their mass directly to energy in the form of
gamma rays. Likewise, gamma rays can spontaneously revert to particle-antiparticle pairs. Matter and energy
exchange places frequently in this process, with a conversion formula given by the famous equation E = mc2.
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25.5 Resources

• Ask your teacher to provide you with a copy of the Standard Model of Particles and Interactions. If there
aren’t any available, please download and print out a copy of the Standard Model of Particles and Interactions,
available at http://particleadventure.org/
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25.6 Standard Model of Particle Physics Prob-
lem Set

You will need a copy of the Standard Model to do this assignment. See above.

1. Which is more massive, the strange quark or the muon?
2. If you bound an up quark to an anti-strange quark using gluons, would the result be a proton, a neutron, an

electron, or some type of meson?
3. Name three particles that do not interact with gluons.
4. Name three particles that do not interact with photons.
5. Which nucleon does not interact with photons? Why?
6. Does the electron neutrino interact with photons? Why or why not?
7. What quarks make up an anti-proton?
8. What rule would be violated if Dr. Shapiro attempted to turn an anti-electron (positron) into a proton?
9. Can any of the intermediate vector bosons ( W−, W+, and Z◦) interact with light? If so, which?

10. What force (of the four) must be involved in the process of beta decay, in which a neutron disappears and
turns into a proton, an electron, and an electron anti-neutrino?

11. In the world-view provided by the Standard Model, the universe of the very small contains which of the
following? (Choose any and all that apply.)

a. Boson-exchange interactions between different types of quarks and leptons
b. Annihilation and creation of particle-antiparticle pairs
c. Electromagnetic interactions between charged objects

a. Electromagnetic interactions between Z◦ bosons
b. Weak interactions involving quarks and leptons

f. Strong interactions between water molecules Explain.
12. What is string theory? Why isn’t string theory mentioned anywhere on the Standard Model? (If you are not

already familiar with string theory, you may have to do some research online.)
13. Name three winners of the Nobel Prize who were directly investigating atomic and subatomic particles and

interactions. Investigate online.

Answers to Selected Problems

1. strange
2. some type of meson
3. Electron, photon, tau. . .
4. Neutron, electron neutrino, Z0

5. Neutron, because it doesn’t have electrical charge
6. No, because it doesn’t have electrical charge
7. Two anti-up quarks and an anti-down quark
8. Lepton number, and energy/mass conservation
9. Yes, W+,W−, because they both have charge

10. The weak force because it can interact with both quarks and leptons
11. Yes; a,b,c,e; no; d,f
12. The standard model makes verifiable predictions, string theory makes few verifiable predictions.
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323

http://www.ck12.org


26.1. The Big Idea www.ck12.org

26.1 The Big Idea

The interaction of subatomic particles through the four fundamental forces is the basic foundation of all the physics
we have studied so far. There’s a relatively simple way to calculate the probability of collisions, annihilations, or
decays of particles, invented by physicist Richard Feynman, called Feynman diagrams. Drawing Feynman diagrams
is the first step in visualizing and predicting the subatomic world. If a process does not violate a known conservation
law, then that process must exist with some probability. All the Standard Model rules of the previous chapter are
used here. You are now entering the exciting world of particle physics.
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26.2 Key Concepts

• To make a Feynman diagram, you plot time on the horizontal axis and position on the vertical axis. This is
called a space-time diagram.

• The fifth conservation law: CPT symmetry. States that if you charge conjugate (i.e. change matter to anti-
matter), Parity reversal (i.e. mirror reflection) and then reverse the flow of time, a matter particle is exactly the
same as the anti-matter particle (see below)

This is why anti-matter has its time arrow pointing backwards. And on collision diagrams, the matter is identical to
the anti-matter after a CPT operation.

• If a particle is not moving, then we say that its space coordinate is fixed. Of course, if it’s just sitting there,
then it’s moving through time. On the diagram below (left), the horizontal line shows the path of motion of
a stationary particle. The diagram to the right shows the path of motion of a particle moving away from the
origin at some speed.

• Here are two particles colliding! Watch out!

• We use the following symbols in Feynman diagrams:
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• Annihilation Diagram: When matter and antimatter particles collide, they annihilate, leaving behind pure
energy for the example below in the form of electromagnetic radiation (photons!). A different set of matter
and antimatter is recreated soon thereafter. The Feynman diagram for that process looks like this:

Note that space and time axes have been left out; they are understood to be there. Also note that the arrow
on the bottom is supposed to be backwards. We do that any time we have an antiparticle. Most people like
to think of antiparticles as traveling backwards in time, and this is roughly explained by CPT symmetry. It is
very important that you remember that time is the horizontal axis! A lot of people see the drawing above and
think of it as two particles coming together at an angle. These two particles are in a head-on collision, not
hitting at an angle.

• Scattering Diagram: Here is the Feynman diagram for two electrons coming towards each other then repelling
each other through the electromagnetic force (via exchange of a virtual photon). Note that the particles are
always separated in space (vertical axis) so that they never touch. Hence they are scattering by exchanging
virtual photons which cause them to repel. You can think of a virtual photon as existing for an instant of time.
Therefore there is no movement in time (horizontal) axis.
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26.3 Example

TABLE 26.1:

Question: For the following Feynman diagrams, describe in words the process that is occurring. For instance: (a)
what type of interaction: annihilation or scattering (b) what are the incoming articles? (c) which kind of boson
mediates the interaction? (d) which fundamental force is involved in the interaction? (e) what are the outgoing
particles? Also, is the interaction "allowed"?

Answer: In this Feynman diagram, one of the down quark from a neutron splits into a upward quark, an electron,
and a electron neutrino via a W− particle. Because this does not break any laws, this interaction is allowed. Infact,
this is a interaction that we already know. This is β decay.
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26.4 Feynman Diagrams Problem Set

For the following Feynman diagrams, describe in words the process that is occurring. For instance: (a) what type
of interaction: annihilation or scattering (b) what are the incoming articles? (c) which kind of boson mediates the
interaction? (d) which fundamental force is involved in the interaction? (e) what are the outgoing particles?

Also, for each, decide if the interaction shown is allowed. An interaction is allowed if it does not violate any of the
rules set out by the Standard Model of physics. If the interactions violate some rule, state which rule it violates. If
they do not violate a rule, say that the interactions are allowed.

Hint: the best approach is to verify that the incoming and outgoing particles can interact with the boson (force
particle) then to look at each vertex where more than one particle is coming together. Look immediately to the left
of the vertex (before) and immediately to the right of the vertex (after). For instance, one rule states that the total
electric charge before a vertex must equal the total electric charge after a vertex. Is that true? Check all the conserved
quantities from the previous chapter in this way.

1.

2.

3.
4. #

a.

5. #
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a.

6.

7.

8.

9.

10.

11.

12.

13.
In this case, the electron and positron are exchanging virtual electron/positron pairs.

14.

329

http://www.ck12.org


26.4. Feynman Diagrams Problem Set www.ck12.org

15.
16. Draw all of the possible Feynman diagrams for the annihilation of an electron and positron, followed by

motion of an exchange particle, followed by the creation of a new electron and positron.
17. Draw the Feynman diagram for the collision of an up and anti-down quark followed by the production of a

positron and electron neutrino.

Answers to Selected Problems

1. Allowed: an electron and anti-electron(positron) annihilate to a photon then become an electron and anti-
electron(positron) again.

2. Not allowed: electrons don’t go backward though time, and charge is not conserved
3. Not allowed: lepton number is not conserved
4. a. Allowed: two electrons exchange a photon b. Not allowed: neutrinos do not have charge and therefore

cannot exchange a photon.
5. a. Allowed: an electron and an up quark exchange a photon b. Not allowed: lepton number not conserved
6. Not allowed: quark number not conserved
7. Allowed: electron neutrino annihilates with a positron becomes a W+ then splits to muon and muon neutrino.
8. Allowed: up quark annihilates with anti-up quark becomes Z0, then becomes a strange quark and anti-strange

quark
9. Not allowed: charge not conserved

10. Allowed: this is a very rare interaction
11. Not allowed: electrons don’t interact with gluons
12. Not allowed: neutrinos don’t interact with photons
13. Allowed: the electron and the positron are exchanging virtual electron/positron pairs
14. Allowed: this is beta decay, a down quark splits into an up quark an electron and an electron neutrino via a

W− particle.
15. Allowed: a muon splits into an muon neutrino, an electron and an electron neutrino via a W− particle.
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27.1 The Big Idea

Quantum Mechanics, discovered early in the 20th century, completely changed the way physicists think. Quantum
Mechanics is the description of how the universe works on the very small scale. It turns out that we can’t predict
what will happen, but only the probabilities of certain outcomes. The uncertainty of quantum events is extremely
important at the atomic level (and smaller levels) but not at the macroscopic level. In fact, there is a result called
the correspondence principle that states that all results from quantum mechanics must agree with classical physics
when quantum numbers are large – that is, for objects with large mass. The foundation of quantum mechanics was
developed on the observation of wave-particle duality.

Electromagnetic radiation is carried by particles, called photons, which interact with electrons. Depending on the
experiment, photons can behave as particles or waves. The reverse is also true; electrons can also behave as particles
or waves.

Because the electron has a wavelength, its position and momentum can never be precisely established. This is called
the uncertainty principle. (What has been said above about the electron is true for protons or any other particle, but,
experimentally, the effects become undetectable with increasing mass.)

The Key Concepts

• The energy of a photon is the product of its frequency and Planck’s Constant. This is the exact amount of
energy an electron will have if it absorbs a photon.

• A photon, which has neither mass nor volume, carries energy and momentum; the quantity of either energy or
momentum in a photon depends on its frequency. The photon travels at the speed of light.

• The five conservation laws hold true at the quantum level. Energy, momentum, angular momentum, charge
and CPT are all conserved from the particle level to the astrophysics level.

• If an electron loses energy the photon emitted will have its frequency (and wavelength) determined by the
difference in the electron’s energy. This obeys the conservation of energy, one of the five conservation laws.

• An electron, which has mass (but probably no volume) has energy and momentum determined by its speed,
which is always less than that of light. The electron has a wavelength determined by its momentum.

• If a photon strikes some photoelectric material its energy must first go into releasing the electron from the
material (This is called the work function of the material.) The remaining energy, if any, goes into kinetic
energy of the electron and the voltage of an electric circuit can be calculated from this. The current comes
from the number of electrons/second and that corresponds exactly to the number of photons/second.

• Increasing the number of photons will not change the amount of energy an electron will have, but will increase
the number of electrons emitted.

• The momentum of photons is equal to Planck’s constant divided by the wavelength.
• The wavelength of electrons is equal to Planck’s constant divided by the electron’s momentum. If an electron

is traveling at about .1 c this wavelength is then not much smaller than the size of an atom.
• The size of the electron’s wavelength determines the possible energy levels in an atom. These are negative

energies since the electron is said to have zero potential energy when it is ionized. The lowest energy level
(ground state) for hydrogen is −13.6 eV. The second level is−3.4 eV. Atoms with multiple electrons have
multiple sets of energy levels. (And energy levels are different for partially ionized atoms.)

• When an electron absorbs a photon it moves to higher energy level, depending on the energy of the photon. If
a 13.6 eV photon hits a hydrogen atom it ionizes that atom. If a 10.2 eV photon strikes hydrogen the electron
is moved to the next level.

• Atomic spectra are unique to each element. They are seen when electrons drop from a higher energy level to
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a lower one. For example when an electron drops from −3.4 eV to −13.6 eV in the Hydrogen atom a 10.2 eV
photon is emitted. The spectra can be in infra-red, visible light, ultra-violet and even X−rays. (The 10.2 eV
photon is ultra-violet.)

• The wave nature of electrons makes it impossible to determine exactly both its momentum and position. The
product of the two uncertainties is on the order of Plank’s Constant. (Uncertainty in the electron’s energy and
time are likewise related.)

The Key Equations

E = h f

Relates energy of a photon to its frequency.

p =
h
λ

Relates the momentum of a photon to its wavelength.

λ =
h
p

The Debroglie wavelength of an electron.

∆x∆p≥ h
4π

This is the Heisenberg Uncertainty Principle, (HUP) which relates the uncertainty in the momentum and position of
a particle.

∆E∆t ≥ h
4π

Relates the uncertainty in measuring the energy of a particle and the time it takes to do the measurement.

h = 6.626×10−34 J-sec

Planck’s constant.

1 eV = 1.602×10−19 J

The most convenient unit of energy at the atomic scale is the electron volt, defined as the potential energy of the
charge of an electron across a potential difference of 1 volt.
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1240 nm→ 1 eV

A photon of energy of 1.00 eV has a wavelength of 1240 nm and vice versa. This is a convenient shortcut for
determining the wavelengths of photons emitted when electrons change energy levels, or for calculations involving
the photoelectric effect.

Problems Set: Quantum Mechanics

1. Calculate the energy and momentum of photons with the following frequency:

a. From an FM station at 101.9 MHz
b. Infrared radiation at 0.90×1014 Hz
c. From an AM station at 740 kHz

2. Find the energy and momentum of photons with a wavelength:

a. red light at 640 nm
b. ultraviolet light at 98.0 nm
c. gamma rays at .248 pm

3. Given the energy of the following particles find the wavelength of:

a. X-ray photons at 15.0 keV
b. Gamma ray photons from sodium 24 at 2.70 MeV
c. A 1.70 eV electron

4. The momentum of an electron is measured to an accuracy of 5.10×10−15 kg−m/s. What is the corresponding
uncertainty in the position of the electron?

5. The four lowest energy levels in electron-volts in a hypothetical atom are respectively: −34 eV,−17 eV,−3.5 eV,−.27 eV.

a. Find the wavelength of the photon that can ionize this atom.
b. Is this visible light? Why?
c. If an electron is excited to the fourth level what are the wavelengths of all possible transitions? Which

are visible?

6. Light with a wavelength of 620 nm strikes a photoelectric surface with a work function of 1.20 eV. What is
the stopping potential for the electron?

7. For the same surface in the previous problem but different frequency light, a stopping potential of 1.40 V is
observed. What is the wavelength of the light?

8. An electron is accelerated through 5000 V. It collides with a positron of the same energy. All energy goes to
produce a gamma ray.

a. What is the wavelength of the gamma ray ignoring the rest mass of the electron and positron?
b. Now calculate the contribution to the wavelength of the gamma ray of the masses of the particles?

Recalculate the wavelength.
c. Was it safe to ignore their masses? Why or why not?

9. An photon of 42.0 eV strikes an electron. What is the increase in speed of the electron assuming all the
photon’s momentum goes to the electron?

10. A 22.0 keVX−ray in the x-direction strikes an electron initially at rest. This time a 0.1 nmX−ray is observed
moving in the x−direction after collision. What is the magnitude and direction of the velocity of the electron
after collision?

11. The highly radioactive isotope Polonium 214 has a half-life of 163.7µs and emits a 799 keV gamma ray upon
decay. The isotopic mass is 213.99 amu.
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a. How much time would it take for 7/8 of this substance to decay?
b. Suppose you had 1.00 g of Po214 how much energy would the emitted gamma rays give off while 7/8

decayed?
c. What is the power generated in kilowatts?
d. What is the wavelength of the gamma ray?

12. Ultra-violet light of 110 nm strikes a photoelectric surface and requires a stopping potential of 8.00 volts.
What is the work function of the surface?

13. Students doing an experiment to determine the value of Planck’s constant shined light from a variety of lasers
on a photoelectric surface with an unknown work function and measured the stopping voltage. Their data is
summarized below:

a. Construct a graph of energy vs. frequency of emitted electrons.
b. Use the graph to determine the experimental value of Planck’s constant
c. Use the graph to determine the work function of the surface
d. Use the graph to determine what wavelength of light would require a 6.0 V stopping potential.
e. Use the graph to determine the stopping potential required if 550 nm light were shined on the surface.

TABLE 27.1:

Laser Wavelength (nm) Voltage (V )
Helium-Neon 632.5 .50
Krypton-Flouride 248 3.5
Argon 488 1.1
Europium 612 .60
Gallium arsenide 820 .05

14. An element has the following six lowest energy (in eV ) levels for its outermost electron: −24 eV,−7.5 eV,−2.1 eV,−1.5 eV,−.92 eV,−.69 eV.

a. Construct a diagram showing the energy levels for this situation.
b. Show all possible transitions; how many are there?
c. Calculate the wavelengths for transitions to the −7.5 eV level
d. Arrange these to predict which would be seen by infrared, visible and ultraviolet spectroscopes

15. A different element has black absorption lines at 128 nm,325 nm,541 nm and677 nm when white light is
shined upon it. Use this information to construct an energy level diagram.
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16. An electron is accelerated through 7500 V and is beamed through a diffraction grating, which has 2.00×107

lines per cm.

a. Calculate the speed of the electron
b. Calculate the wavelength of the electron
c. Calculate the angle in which the first order maximum makes with the diffraction grating
d. If the screen is 2.00 m away from the diffraction grating what is the separation distance of the central

maximum to the first order?

17. A light source of 429 nm is used to power a photovoltaic cell with a work function of 0.900 eV. The cell is
struck by 1.00×1019 photons per second.

a. What voltage is produced by the cell?
b. What current is produced by the cell?
c. What is the cell’s internal resistance?

18. A .150 nmX−ray moving in the positive x−direction strikes an electron, which is at rest. After the collision
an X−ray of 0.400 nm is observed to move 45 degrees from the positive x−axis.

a. What is the initial momentum of the incident X−ray?
b. What are the x and y components of the secondary X−ray?
c. What must be the x and y components of the electron after collision?
d. Give the magnitude and direction of the electrons’ final velocity.

19. Curium 242 has an isotopic mass of 242.058831 amu and decays by alpha emission; the alpha particle has a
mass of 4.002602 amu and has a kinetic energy of 6.1127 Mev.

a. What is the momentum of the alpha particle?
b. What is its wavelength?
c. Write a balanced nuclear equation for the reaction.
d. Calculate the isotopic mass of the product.
e. If the alpha particle is placed in a magnetic field of .002 T what is the radius of curvature? (The alpha

particle has a double positive charge.)
f. If the alpha particle is moving in the x−direction and the field is in the z−direction find the direction of

the magnetic force.
g. Calculate the magnitude and direction of the electric field necessary to make the alpha particle move in

a straight line.

20. A student lab group has a laser of unknown wavelength, a laser of known wavelength, a photoelectric cell of
unknown work function, a voltmeter and test leads, and access to a supply of resistors.

a. Design an experiment to measure the work function of the cell, and the wavelength of the unknown laser.
Give a complete procedure and draw an appropriate circuit diagram. Give sample equations and graphs
if necessary.

b. Under what circumstances would it be impossible to measure the wavelength of the unknown laser?
c. How could one using this apparatus also measure the intensity of the laser (number of photons emit-

ted/second)?
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21. The momentum of an electron is measured to an accuracy of±5.1×10−24 kg · m/s. What is the corresponding
uncertainty in the position of the same electron at the same moment? Express your answer in Angstroms
(1 = 10−10 m, about the size of a typical atom).

22. Thor, a baseball player, passes on a pitch clocked at a speed of 45±2 m/s. The umpire calls a strike, but Thor
claims that the uncertainty in the position of the baseball was so high that Heisenberg’s uncertainty principle
dictates the ball could have been out of the strike zone. What is the uncertainty in position for this baseball?
A typical baseball has a mass of 0.15 kg. Should the umpire rethink his decision?

23. Consider a box of empty space (vacuum) that contains nothing, and has total energy E = 0. Suddenly, in
seeming violation of the law of conservation of energy, an electron and a positron (the anti-particle of the
electron) burst into existence. Both the electron and positron have the same mass, 9.11×10−31 kg.

a. Use Einstein’s formula ( E = mc2) to determine how much energy must be used to create these two
particles out of nothing.

b. You don’t get to violate the law of conservation of energy forever – you can only do so as long as the
violation is “hidden” within the HUP. Use the HUP to calculate how long (in seconds) the two particles
can exist before they wink out of existence.

c. Now let’s assume they are both traveling at a speed of 0.1 c. (Do a non-relativistic calculation.) How far
can they travel in that time? How does this distance compare to the size of an atom?

d. What if, instead of an electron and a positron pair, you got a proton/anti-proton pair? The mass of a
proton is about 2000× higher than the mass of an electron. Will your proton/anti-proton pair last a
longer or shorter amount of time than the electron/positron pair? Why?

Answers to Selected Problems

1. 1. 6.752×10−26J,2.253×10−34 kgm/s
2. 5.96×10−20J,1.99×10−28 kgm/s
3. 4.90×10−28J,1.63×10−36 kgm/s

1. 1.94 eV,1.04×10−27 kgm/s
2. 12.7 eV,6.76×10−27 kgm/s
3. 5.00 eV,2.67×10−21 kgm/s

1. .0827 nm
2. 4.59×10−4 nm
3. 730 nm

2. 1.03×10−20 m

1. 36 nm
2. no
3. 380 nm,73 nm,74 nm,36 nm,92 nm,39 nm

3. .80 V
4. 480 nm

1. .124 nm
2. .00120 nm

5. 24,600 m/s
6. 1.84×108 m/s

1. .491 m/s
2. 3.14107 J
3. 64 Mw
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4. 1.55 pm

7. 3.27 eV
8. .
9. (b) 15 (c) 182 nm,188 nm,206 nm,230 nm

10. −10.3 eV,−3.82 eV,−2.29 eV,−1.83 eV

1. 4.19×107 m/s
2. 1.70×10−11 m
3. 1.95◦

4. .068 m

1. 1.89 V
2. 1.60 A
3. 1.25 Ω

1. 4.40×10−24 kgm/s
2. 1.17×10−24 kgm/s
3. 3.23×10−24 kgm/s
4. 3.76×107 m/s

1. 1.1365×10−22 kgm/s
2. 5.860 pm
3. 242 Cu→4 He+2 38Pu
4. 238.0497 amu
5. 17.7 cm
6. −y
7. +y,34.2 N/C

11. .
12. 0.10 Angstrom
13. 1.76×10−34 eV
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28.1 The Big Idea

The observed global warming on Earth is a manifestation of the Second Law of Thermodynamics. The Earth operates
like any heat engine. Input heat from solar radiation and exhaust heat (terrestrial radiation) largely determine the
operating temperature (global surface temperature). Over geological periods this heat exchange reaches equilibrium
and the temperature is stable. If the input heat increases or the exhaust heat decreases the temperature rises and vice
versa. Natural processes over geologic time have changed the input and affected both output heat and temperature.
In the present era the quantity of exhaust heat is being rapidly restricted by the greenhouse effect; consequently,
the earth’s temperature must rise to reach equilibrium. How much higher it must rise depends entirely on human
activity.

The input heat – solar energy received – is a function of solar activity and oscillations in characteristics of the Earth’s
orbit.

The quantity of exhaust heat, terrestrial radiation, is largely a function of the presence of certain gases in the
atmosphere that absorb outgoing infrared radiation. This is known as the greenhouse effect. The greenhouse effect
is due to the differential absorption of certain wavelengths of solar as compared to terrestrial radiation.

The solar energy reaching the surface of the Earth is concentrated in short wavelengths, which can easily penetrate
the greenhouse gases, such as Carbon Dioxide and Methane. The Earth, however, is cooler than the sun and it
radiates its heat in the form of energy in the far infrared range. These longer wavelengths are partially absorbed by
the greenhouse gases and some of the solar heat is returned to Earth. At a certain temperature these processes are
in equilibrium and the surface temperature of the Earth is stable. However, if more greenhouse gases are put in the
atmosphere the amount of trapped terrestrial radiation increases, leading to an increase in global temperature.

Currently the heating effect of extra greenhouse gases (since the start of the industrial revolution) is equal to about
1.0 W/m2. Thus the recent period has recorded parallel increases in concentration of carbon dioxide and average
global temperature. As more greenhouse gases are put into the atmosphere the temperature will increase further.
There are certain effects of a warmer Earth (discussed below) which could accelerate the process, even if no more
greenhouse gases are put into the atmosphere (an unlikely prospect for the foreseeable future).
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28.2 The Key Concepts (Possible Effects That
Can Accelerate Global Warming)

1. Time Lag: The excess energy warms the ocean very slowly, due to water’s high heat capacity. Even in the
unlikely event that no more greenhouse gases are added to the atmosphere the temperature increase already
measured will be nearly doubled.

2. The Effect of Water Vapor: Increasing temperatures will lead to more evaporation and more water vapor in
the atmosphere. Water vapor is a greenhouse gas and its increased presence may cause further warming in a
positive feedback loop. On the other hand if the water vapor results in more clouds more solar radiation will
be reflected, a possible negative feedback.

3. Albedo is the amount of light reflected by a surface. Sea ice has an albedo of .85, meaning 85% of light is
reflected back from its surface (and leaves the Earth) and 15% is absorbed and stays in the Earth; ice-free
water has an albedo of .07.(93% of the solar energy is absorbed.) Thus the observed melting of sea ice could
amplify the effect of global warming

4. The melting of the Arctic Permafrost also has an amplifying effect by releasing carbon dioxide and methane
that is normally trapped in the tundra.

5. Warmer oceans are hostile to algae and cytoplankton , which are the most important absorbers of carbon
dioxide. The loss of the these two photosynthesizers would remove the most important natural CO2 sink.

6. Loss of Rainforests would have a similar effect. Global warming is likely to lead to desertification of the
habitats of rainforests. The rainforest is the second most important CO2 sink.
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28.3 The Key Concepts (Physical Laws and Ob-
servations)

1. The relationship between temperature of a body and its radiation wavelength is given by Wien’s Law: For any
body that radiates energy, the wavelength of maximum energy radiated is inversely related to the temperature.

2. The effect of global warming on the solubility of Carbon Dioxide (CO2) and methane (CH4) is governed
by two laws that have opposing effects. Henry’s Law: The solubility of a gas is directly proportional to
the partial pressure of that gas. The constant of proportionality is Henry’s Law Constant. This constant of
proportionality is temperature dependent and decreases as temperature increases. Therefore as carbon dioxide
increases in the atmosphere the partial pressure of CO2 increases and more of it tends to dissolve in the oceans,
but as the temperature increases the constant decreases and less of it tends to dissolve. The net effect at a given
temperature will have to be calculated.

3. The Solar Radiation peaks at 610 nm; there is 61.2% of solar radiation is in the visible band (400−750 nm)
with less than 9% in the uv band and about 30 % in the near infra red. Some 99% is radiated between
275 and 5000 nm. This band largely is unabsorbed by any atmospheric gases. The most significant of the
greenhouse gases are H2O and CO2. The plot above details the absorbance of various wavelengths of radiation
by atmospheric gases in the shortwave region.

4. The Earth’s radiation peaks at 11,000 nm, with an intensity of .04 W/cm2 . Some 99% is radiated between
40,000 nm and 3000 nm in the longer infrared regions. This band is unabsorbed by nitrogen, oxygen and
argon (99%) of the Earth’s current atmosphere), but partially absorbed by carbon dioxide, methane, water
vapor, nitrous oxide and some minor gases. The gases that absorb this band of radiation are called greenhouse
gases.

5. Earth Orbital Changes: There are three principal variations in orbit that are collectively known as the
Milankovitch Cycles. Atmospheric concentrations of methane closely followed this cycle historically and
on a larger time frame so have concentrations of CO2.

a. precession of the rotational axis (period: 23,000 years)
b. variation in tilt of rotational axis from 21.5◦ to 24.5◦ (period: 41,000 years)
c. eccentricity of the elliptical orbit (period: 100,000 years)

6. Departures from the historical cyclical trend began 8000 years ago with the development of agriculture.
This led to a temperature rise of 0.8 ◦C above expected trends and concentrations of CO2 rising 30 ppm above
expected trends with the concentration of methane 450 ppb above natural trends. In the last 100 years of
industrialization these departures from normal have accelerated with temperature rising an additional 0.8 ◦C
and CO2 concentrations rising to 370 ppm, which is 90 ppm higher than the recorded CO2 concentrations at the
warmest points in the interglacial periods. Methane concentrations are at 1750 ppb,1000 ppb above historical
highs. Over 70% of the extra greenhouse gases were added after 1950. CO2 is emitted whenever anything
is burned, from wood to coal to gasoline. Methane is produced by animal husbandry, agriculture, and by
incomplete combustion or leakage of natural gas. As more greenhouse gases are put into the atmosphere
the temperature will increase further. The co-variation of CO2 concentrations and temperature has been
demonstrated not only by recent observation, but by records of the last 700,000 years from Antarctic ice
cores. There are many possible effects and feedback mechanisms that are currently being studied and modeled
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to better predict possible outcomes of this global trend. Many of these are identified above and in the following
sections.
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28.4 The Key Applications

1. Changing quantity of CO2 in oceans will lead to a change in pH of the oceans, changing its suitability as a
habitat for some species of oceanic life.

2. Human health problems are associated with warmer temperatures including a projected 10-fold rise in
mosquito populations and the diseases they bring as well as the already documented spread of malaria and
dengue fever into areas in which these diseases were hitherto unknown.

3. Loss of water supply: A large part of human and other animal water supply is supplied from glaciers or
melting snow-packs. This dependable supply will be disrupted or curtailed for many people. Especially
vulnerable are Southeast Asia and India, which depend on the Himalayas, and much of South America, which
depends on the Andes. In the US, California and the West stand to have a curtailed water supply in the summer
months as a result of global warming.

4. Weather changes:

a. Global Warming seems to cause the North Atlantic Oscillation to become stuck in the positive mode. The
effect is to have warmer weather in Alaska, Siberia and western Canada, but colder weather in eastern
Canada, Europe, and northeast US.

b. The same effect likely will lead to dry windy conditions in Europe and North America and dry conditions
in much of Africa.

c. Models show global warming leading to droughts in most of the northern hemisphere, particularly in the
grain belts of North America, Europe, and Asia.

d. At the same time, there is predicted to be increased rain overall, but coming in the form of severe storms
and consequent flooding.

e. The conditions that lead to hurricanes and tornadoes are powered by solar energy. More solar energy in
the ocean may lead to more severe hurricanes. There is some evidence to support that this has already
occurred. The combination of warm Gulf waters and windy plains cause tornadoes. Both of these
conditions will be increased by global warming.

5. Melting of the land glaciers will lead to rising sea levels. The Greenland ice sheet is moving into irreversible
melting, which together with the loss of other land ice raise the ocean levels 8 meters in a century. Thermal
expansion of water would add several tens of centimeters to this rising sea level.

6. Ecosystems under stress: When temperature changes occur over thousands of years, plants and animals adapt
and evolve. When they happen over decades, adaptation is not always possible. The first flowering days of 385
plant species were on average 4.5 days earlier in 1991-2000 than normal. This can lead to lack of pollination
and loss of fruiting. A study in the Netherlands showed that weather changes caused oak buds to leaf sooner,
causing winter moth caterpillars to peak in biomass earlier. The birds that depend on the caterpillars to feed
their chicks did not delay their egg laying. This led to a mismatch of 13 days between food availability and
food needs for these birds.

The Key Equations

1. Wien’s Law: T λmax = A; where A = 2.8978 m−K
2. Henry’s Law: C = kPpartial , where k is temperature dependent and gas dependent; CO2@20◦ = 3.91×

10−3 molal/atm, CO2@25◦ = 3.12× 10−2 molal/atm; CH4@20◦ = 1.52× 10−3 molal/atm. The concen-
tration is given in molals (Molal is moles of solute/kg of solvent) The partial pressure is given in atmospheres.

3. Energy imbalance of 12 watt/m2-year leads to deglaciation that raises sea levels 1 meter.
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4. Climate Sensitivity: Energy imbalance of 1 W/m2→ .75◦C± .25◦ C change in average global temperature
5. Present Energy Imbalance = about 1 W/m2(±.5 W/m2)

6. The picture above shows the normal energy balance of the Earth. Note that normally the 342 W/m2 incoming
is balanced by 235 W/m2 outgoing +107 W/m2 reflected radiation. At present, the atmospheric window
allows only 39 W/m2 out resulting in a total of 234 W/m2 outgoing and an energy surplus of 1 W/m2 that
results in temperature increases. (These figures are ±.5 W/m2).

7. 1 kwh = .68 kg CO2 (EPA estimates)
8. 10,000 kWh = 1.4 cars off the road = 2.9 acres of trees planted (EPA estimates)
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28.5 Problem Set Chapter 26

1. One W/m2 energy imbalance may not seem much. (In the following calculations assume for the sake of
significant digits that this is an exact number. It is in fact ±0.5 W/m2)

a. Calculate the total watts received by Earth. Surface area of a sphere is 4πr2.
b. Convert to energy in kWh.
c. How many joules of extra energy are received by Earth in a year?
d. To estimate the contrasting energy of an atomic bomb, assume 100 kg of U235, isotopic mass of 235.043924,

is split into Xe142>, isotopic mass of 141.929630, Sr90, isotopic mass of 89.907738 and 3 neutrons, each
with mass of 1.008665. All masses are given in amu’s. First, find the mass difference between reactant
and products. Then, converting to kilograms and using E = ∆mc2, find the energy in joules of an atomic
bomb.

e. How many atomic bombs would have to be set off to equal the extra energy the Earth receives in one
year from global warming?

2. It is estimated that a 12 W/m2 energy imbalance leads to sufficient melting of land ice to cause the sea levels
to rise one meter.

a. How many joules is that?
b. What mass of ice is melted? The heat of fusion of water is 3.33×105 J/kg.
c. What volume of water is that? (ρ = 1000 kg/m3)
d. From the above result, you should be able to estimate the surface area of the world’s oceans and check

the given estimate.

3. Given the uncertainty of ±0.5 W/m2, give the high and low estimates of global sea level rise in a century.
Draw two new world maps using this data. Draw maps of your state, if it is a coastal state, 100 years from
now given these estimates. (Perhaps your inland state will become a coastal state.)

4. Given the following table involving the growth in concentration of greenhouse gases:

TABLE 28.1:

year [CO2] ppm [CH4] ppb
1940 310 1100
1960 315 1250
1980 335 1550
2000 370 1750
2020 (IPCC* projection) 420 2150

∗ Intergovernmental Panel on Climate Change

(a) Graph this data with time on the horizontal axis

347

http://www.ck12.org


28.5. Problem Set Chapter 26 www.ck12.org

(b) Determine the rate of increase in the concentrations of the two gases

i. 1940 - 2000

ii. 1960 – 2000

iii. 1980 – 2000

iv. the instantaneous rates of change in 2000

v.the instantaneous rates of change projected for 2020

5. Climate forgings can come from a variety of sources besides methane and carbon dioxide. Determine whether
the following are positive feedbacks (contribute to global warming) or negative. You may have to do some
research on this.

a. Black Carbon Soot
b. Reflective Aerosols
c. Chlorofluorocarbons
d. Nitrous Oxide
e. Ozone
f. Cloud Droplet Changes

6. An overlooked area of additional global warming is the traditional cook stove. In one Honduran study, the
soot smoke produced from one stove absorbed 65% of terrestrial radiation that then went into warming the
atmosphere. There are 400 million such cook stoves worldwide, each of which emit 1.5 g of soot per kilogram
of wood burned. The average daily use of wood is 7.5 kg per stove. Calculate the mass of soot released
through cook stoves per day, per year.

For Problems 7 - 10 use the following tables:

TABLE 28.2: Electricity Emission Rates: (EPA)

State or region CO2 in kg/Mwh CH4 in kg/Mwh N2 O in kg/Mwh
California 364.8 .00304 .00168
Michigan 740.1 .00662 .0133
New York City 494.3 .00367 .00404
Oregon 304.3 .00149 .00154

TABLE 28.3: Global Warming Potential of Gases Compared to Carbon Dioxide (IPCC):

Greenhouse gas Multiplier
Carbon dioxide CO2 1
Methane CH4 23
Nitrous OxideN2 O 296
A/C refrigerant HFC−143a 4300
Auto A/C refriger HFC−134a 1300
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TABLE 28.3: (continued)

Greenhouse gas Multiplier
SF6 22,000
C2 F6 11,900

7. A typical household air conditioner draws about 20a from a 240 v line.

a. If used for 8 hours how many kwh does it use?
b. In the course of a 120 day summer how many Mwh is that?
c. Calculate the mass of carbon dioxide one summer’s use of ac contributes. (Pick a state or region from

above.)
d. Calculate the mass of methane and N2O emitted.
e. Using the global warming multipliers for the latter two gases calculate the global warming potential in

equivalent kg of CO2 for all 3 gases.

8. If you “shut down” your computer, but the LED light is still on, it consumes about 4 w of power. Suppose you
do that for every weekend (60 hours) every week of the year. Repeat the calculations in problem 7 to find out
the global warming potential in kg of CO2.

9. In 2006 Natomas High School in California used 1692 Mwh of electricity. Repeating the calculations above,
find the kg of carbon dioxide emitted.

10. A large car or SUV typically carries 1.0 kg of refrigerant for the a/c.

a. If this were released into the atmosphere calculate the equivalent of carbon dioxide released.
b. Repeat this calculation for a residential air conditioner (capacity is 2.8 kg.), using HFC−143a.
c. Your school has a commercial chiller maybe (1000 ton) with a refrigerant capacity of 1225 kg. If it uses

HFC−134a calculate the equivalent of CO2 emitted, if the chiller is decommissioned.

TABLE 28.4: Emissions of Carbon Dioxide for Different Fuels

Fuel Kg of carbon dioxide emitted/gallon
Gasoline 8.78
California reformulated gasoline, 5.7% ethanol 8.55
Ethanol 6.10
Diesel #2 10.05
biodiesel 9.52
Jet fuel 9.47
propane 5.67
Natural gas/gasoline gallon equivalent 6.86

11. Compare the carbon “footprint” of the following:

a. a hybrid car (45 mpg) that drives 21,000 mile per year in Calif.
b. an SUV (17 mpg) that drives 21,000 miles per year also in Calif.
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c. a mid-size car (24 mpg) that uses ethanol and drives 21,000 miles per year
d. a commercial flatbed (11 mpg) that drives 21,000 miles per year and uses bio diesel

12. Research some typical mileages, type of fuel used, and miles covered in a year and determine the carbon
footprint for:

a. a tractor-trailer truck
b. a commercial airliner
c. a corporate jet
d. a bus
e. Amtrak

13. Looking at the above problems another way, suppose you want to travel from California to New York find
your carbon footprint for the trip using:

a. Amtrak
b. a jet plane
c. a bus
d. an SUV
e. a hybrid

Assume 90% full loads on the commercial transports and 2 passengers on the cars. You will have to go on-line
to find the loads of the commercial transports.

14. China is putting two coal-fired electrical plants in operation each week. These plants do not typically use any
scrubbing or pollution controls. Research the typical Mwh output, and, using either the table for problem 7
(Michigan depends more on coal than the other states listed.) or a more direct source for CO2 emissions for a
coal plant, find the gain in greenhouse gas emissions each year from this source alone. Compare to the results
in problem 4 and determine if the IPCC is underestimating the problem.

Answers to Selected Problems

1. (a)
2. 5.1×1014 W
3. (b)
4. 1.8×1015 kWh
5. (c)
6. 1.6×1022 J
7. (d)
8. 7.0×1015 J
9. (e) About 2.3 million bombs
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CHAPTER 29 Answers to Selected
Problems Version 2

Chapter Outline
29.1 APPENDIX A: ANSWERS TO SELECTED PROBLEMS (3E)
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29.1 Appendix A: Answers to Selected Prob-
lems (3e)

Ch 1: Units and Problem Solving

1. 1. A person of height 5 ft. 11 in. is 1.80 m tall
2. The same person is 180 cm

1. 3 seconds = 1/1200 hours
2. 3x103 ms

2. 87.5 mi/hr
3. (c) if the person weighs 150 lb. this is equivalent to 668 N
4. Pascals (Pa), which equals N/m2

5. 168 lb.,76.2 kg
6. 5 mi/hr/s
7. 15.13 m
8. 11.85 m
9. 89,300 mm

10. (f) 2025 mm2

11. (b) 196 cm2

12. (c) 250 cm3

13. 8 : 1, each side goes up by 2 cm, so it will change by 23

14. 3.5×1051 : 1
15. 72,000 km/h
16. 0.75 kg/s
17. 8×2N cm3/ sec; N is for each second starting with 0 seconds for 8 cm3

18. About 12 million
19. About 1 1

2 trillion (1.5×1012)

20. [a] = N/kg = m/s2

Ch 2: Energy Conservation

1. d
2. (discuss in class)

1. 5.0×105 J
2. 3.7×105 J
3. Chemical bonds in the food.
4. 99 m/s

1. 5.0×105 J
2. 108 m/s

1. 450,000 J
2. 22,500 J
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3. 5,625 J
4. 21.2 m/s
5. 9.18 m

3. .
4. (b) KE = 504,600 J;Ug = 1,058,400 J;Etotal = 1,563,000 J

1. 34 m/s at B;28 m/s at D,40 m/s at E,49 m/s at C and F;0 m/s at H
2. 96 m

1. 1.7 J
2. 1.3 m/s
3. 0.4 J,0.63 m/s

1. 1.2 m/s2

2. 130 J

1. 6750 J
2. 2.25×105 J
3. 1.5×105 J/gallon of gas

5. 0.76 m

Ch 3: One-Dimensional Motion

1. .
2. .
3. .
4. .

1. Zyan
2. Ashaan is accelerating because the distance he travels every 0.1 seconds is increasing, so the speed must

be increasing
3. Ashaan
4. Zyan
5. Ashaan

5. .
6. .
7. 6 minutes
8. (d) 20 meters (e) 40 meters (f) 2.67 m/s (g) 6 m/s (h) Between t = 15 s and t = 20 sec because your position

goes from x = 30 m to x = 20m. (i) You made some sort of turn

1. 7.7 m/s2

2. 47 m,150 feet
3. 34 m/s

1. 1.22 m
2. 4.9 m/s
3. 2.46 m/s
4. −4.9 m/s

9. (b) 1 second (c) at 2 seconds (d) 4m

1. 250 m
2. 13 m/s,−13 m/s
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3. 14 s for round trip

10. Let’s say we can jump 20 feet (6.1 m) in the air. ? Then, on the moon, we can jump 36.5 m straight up.
11. −31m/s2

1. 23 m/s
2. 3.6 seconds
3. 28 m
4. 45m

1. 25 m/s
2. 30 m
3. 2.5 m/s2

12. 2 m/s2

1. v0 = 0
2. 10 m/s2

3. −10 m/s2

4. 60 m

1. 0.3 m/s2

2. 0.5 m/s

Ch 4: Two-Dimensional and Projectile Motion

1. .
2. .
3. .
4. .
5. .
6. .

1. 13 m
2. 41 degrees
3. vy = 26 m/s;vx = 45 m/s
4. 56 degrees, 14 m/s

7. .
8. 32 m

1. 0.5 s
2. 0.8 m/s

9. 104 m
10. t = 0.60 s,1.8 m below target
11. 28 m.

1. 3.5 s.
2. 35 m;15 m

12. 40 m;8.5 m
13. 1.3 seconds, 7.1 meters
14. 50 m;v0y = 30 m/s;500; on the way up
15. 4.4 s
16. 19◦

17. 0.5 s
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18. 2.3 m/s
19. 6 m
20. 1.4 seconds

1. yes
2. 14 m/s @ 23 degrees from horizontal

21. 22 m/s @ 62 degrees

Ch 5: Newton’s Laws

1. .
2. .
3. .
4. Zero; weight of the hammer minus the air resistance.
5. 2 forces
6. 1 force
7. No
8. The towel’s inertia resists the acceleration

1. Same distance
2. You go farther
3. Same amount of force

9. .

1. 98 N
2. 98 N

10. .
11. 32 N
12. 5.7 m/s2

13. .
14. .
15. Fx = 14 N,Fy = 20 N
16. Left picture: F = 23N 98◦, right picture:F = 54 N 5◦

17. 3 m/s2 east
18. 4 m/s2;22.5◦ NE
19. 0.51
20. 0.2
21. The rope will not break because his weight of 784 N is distributed between the two ropes.
22. Yes, because his weight of 784 N is greater than what the rope can hold.
23. Mass is 51 kg and weight is 82 N

1. While accelerating down
2. 686 N
3. 826 N

1. 390 N
2. 490 N

24. 0.33
25. 3.6 kg
26. gsinθ

27. (b) 20 N (c) 4.9 N (d) 1.63 kg (e) Eraser would slip down the wall
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1. 1450 N
2. 5600 N
3. 5700 N
4. Friction between the tires and the ground
5. Fuel, engine, or equal and opposite reaction

28. (b) 210 N (c) no, the box is flat so the normal force doesn’t change (d) 2.8 m/s2 (e) 28 m/s (f) no (g) 69 N (h)
57 N (i) 40 N (j) 0.33 (k) 0.09

29. .

1. zero
2. −kx0

30. (b) f1 = µkm1gcosθ; f2 = µkm2gcosθ (c) Ma (d) TA = (m1 +m2)(a+ µcosθ) and TB = m2a+ µm2 cosθ (e)
Solve by using d = 1/2at2 and substituting h for d

1. Yes, because it is static and you know the angle and m1
2. Yes, TA and the angle gives you m1 and the angle and TC gives you m2,m1 = TA cos25/g and m2 =

TC cos30/g

31. (a) 3 seconds d. 90 m
32. .
33. .
34. .

1. 1.5 N;2.1 N;0.71

Ch 6: Centripetal Forces

1. .
2. .
3. .
4. .

1. 100 N
2. 10 m/s2

1. 25 N towards her
2. 25 N towards you

1. 14.2 m/s2

2. 7.1×103 N
3. friction between the tires and the road

5. .0034g

1. 6.2×105 m/s2

2. The same as a.

6. 3.56×1022N
7. 4.2×10−7 N; very small force
8. g = 9.8 m/s2; you’ll get close to this number but not exactly due to some other small effects
9. (a) 4×1026 N (b) gravity (c) 2×1041 kg

10. .006 m/s2

1. .765
2. 4880 N
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1. ∼ 10−8 N very small force
2. Your pencil does not accelerate toward you because the frictional force on your pencil is much greater

than this force.

11. (a) 4.23×107m (b) 6.6 Re (d) The same, the radius is independent of mass
12. 1.9×107m
13. You get two answers for r, one is outside of the two stars one is between them, that’s the one you want,

1.32×1010m from the larger star.
14. .
15. .

1. v = 28 m/s
2. v−down, a−right
3. f−right
4. Yes, 640N

Ch 7: Momentum Conservation

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. 37.5 m/s
9. v1 = 2v2

1. 24 kg−m
5

2. 0.364 m/s
3. 22 kg−m

5
4. 109 N
5. 109 N due to Newton’s third law

10. 2.0 kg,125 m/s
11. 21 m/s to the left
12. 3250 N

1. 90 sec
2. 1.7×105 sec

1. 60 m/s
2. .700 sec
3. yes, 8.16 m

13. 0.13 m/s to the left

1. 11000 N to the left
2. tree experienced same average force of 11000 N but to the right
3. 2500 lb.
4. about 2.5 “g”s of acceleration

1. no change
2. the last two cars
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14. (a) 0.00912 s

1. 0.0058 m/s2

2. 3.5 m/s2

1. 15 m/s
2. 49◦ S of E

15. (b) 4.6 m/s 68◦

Ch 8: Energy & Force

1. .
2. .
3. .
4. .
5. .

1. 7.18×109 J
2. 204 m/s

1. 34 m/s @ B;28 m/s @ D;40 m/s @ E;49 m/s @ C and F; 0 m/s @ H
2. 30 m
3. Yes, it makes the loop

6. (a) 2.3 m/s (c) No, the baby will not clear the hill.
7. (a) 29,500 J (b) 7.9 m
8. .

1. 86 m
2. 220 m

1. 48.5 m/s
2. 128 N

9. 0.32 m/s each

1. 10 m/s
2. 52 m

1. 1.1×104 N/m
2. 2 m above the spring

10. 96%
11. .

1. .008 m
2. 5.12◦

12. 8 m/s same direction as the cue ball and 0 m/s
13. vgol f =−24.5 m/s;vpool = 17.6 m/s
14. 2.8 m

1. 0.57 m/s
2. Leonora’s
3. 617 J

1. 19.8 m/s
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2. 8.8 m/s
3. 39.5 m

1. 89 kW
2. 0.4
3. 15.1 m/s

15. 43.8 m/s
16. .
17. .
18. .

1. 3.15×105 J
2. 18.0 m/s
3. 2.41 m
4. 7900 J

1. v0/14
2. mv0

2/8
3. 7mv0

2/392
4. 71%

Ch 9: Rotational Motion

1. .

1. 9.74×1037 kg m2
2. 1.33×1047 kg m2

3. 0.5 kg m2

4. 0.28 kg m2

5. 0.07 kg m2

1. True, all rotate 2π for 86,400;sec which is 24 hours,
2. True, ω = 2π/t and t = 86,400 s
3. True, L is the same
4. L = Iω and I = 2/5 mr2

5. True, K = 1
2 Iω2 I = 2/5 mr2 sub− in K = 1/5 mr2ω2

6. True, K = 1
2 Iω2 I = mr2 sub− in K = 1

2 mr2ω2

1. 250 rad
2. 40 rad
3. 25 rad/s
4. Force applied perpendicular to radius allows α

5. 0.27 kg m2,
6. K5 = 84 J and K10 = 340 J

2. .
3. Moment of inertia at the end 1/3 ML2 at the center 1/12 ML2, angular momentum, L = Iω and torque, τ = Iα

change the in the same way
4. .
5. Lower
6. Iron ball

1. 200 N team
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2. 40 N
3. 0.02 rad/s2

4. 25 s

1. Coin with the hole
2. Coin with the hole

1. weight
2. 19.6 N
3. plank’s length (0.8m) left of the pivot
4. 15.7 N m,
5. Ba. weight, Bb. 14.7 N, Bc. plank’s length (0.3m) left of the pivot, Bd. 4.4 N m, Ca. weight, Cb.

13.6 N, Cc. plank’s length (1.00 m) right of the pivot, Cd. 13.6 N m, f) 6.5 N m CC, g) no, net torque
doesn’t equal zero

1. 7.27×10−6 Hz
2. 7.27 Hz

1. 100 Hz
2. 1.25×105 J
3. 2500 J− s
4. 12,500 m−N

7. 28 rev/sec
8. 2300 N
9. (b) 771 N,1030 N (c) 554 kgm2 (d) 4.81rad/sec2

1. 300 N
2. 240N,−22 N
3. .092

1. 2280 N
2. 856 n toward beam, 106 N down
3. 425 kgm2

4. 3.39 rad/sec2

1. −1.28 Nm
2. CCW

10. (a) 1411 kg (c) 17410 N (d) angular acc goes down as arm moves to vertical

Ch 10: Simple Harmonic Motion

1. 1. Buoyant force and gravity
2. T = 6 s, f = 1/6 Hz

1. 9.8×105 N/m
2. 0.5 mm
3. 22 Hz, no,

2. 3.2×103 N/m
3. (a) 110 N/m (d) v(t) = (25)cos(83t)
4. .
5. .
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1. 0.0038 s
2. 0.0038 s

6. .
7. .
8. 4 times
9. 0.04 m

1. 16 Hz
2. 16 complete cycles but 32 times up and down, 315 complete cycles but 630 times up and down
3. 0.063 s

1. 24.8 J,165 N,413 m/s2

2. 11.1m/s,0,0
3. 6.2 J,18.6 J,9.49 m/s,82.5 N,206 m/s2

4. .169 sec,5.9 Hz

10. (b) .245 J (c) 1.40m/s (d) 1.00 m/s (f) 2.82 N (g) 3.10 N

Ch 11: Wave Motion and Sound

1. 390 Hz

1. 4 Hz
2. It was being driven near its resonant frequency.
3. 8 Hz,12 Hz
4. (Note that earthquakes rarely shake at more than 6 Hz).

2. .
3. .

1. 7 nodes including the 2 at the ends
2. 3.6 Hz

4. 1.7 km

1. 1.7 cm
2. 17 m

1. 4.3×1014 Hz
2. 2.3×10−15 s− man that electron is moving fast

1. 2.828 m
2. 3.352 m
3. L = 1/4 λ so it would be difficult to receive the longer wavelengths.

5. Very low frequency
6. (b) Same as closed at both ends
7. .
8. 1.9 Hz or 2.1 Hz.
9. 0.53 m

10. 2.2 m,36 Hz;1.1 m,73 Hz;0.733 m,110 Hz;0.55 m,146 Hz
11. 430 Hz;1.3×103 Hz;2.1×103 Hz;3.0×103 Hz;

1. The tube closed at one end will have a longer fundamental wavelength and a lower frequency.
2. If the temperature increases the wavelength will not change, but the frequency will increase accordingly.

12. struck by bullet first.
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13. 80 Hz;0.6 m

1. 0.457 m
2. 0.914 m
3. 1.37 m

14. 2230 Hz;2780 Hz;2970 Hz
15. 498 Hz
16. 150 m/s

Ch 12: Electricity

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. .
9. .

10. .
11. (b) 1350 N (c) 1350 N

1. 1.1×109 N/C
2. 9000 N

12. Fg = 1.0×10−47 N and Fe = 2.3×10−8 N. The electric force is 39 orders of magnitudes bigger.
13. 1.0×10−4C
14. .
15. (a) down (b) Up 16c,5.5×1011 m/s2 (e) 2.9×108 m/s2

1. Toward the object
2. 3.6×104 N/C to the left with a force of 2.8×10−7 N

16. Twice as close to the smaller charge, so 2 m from 12µC charge and 1 m from 3µC charge.
17. 0.293 N and at 42.5◦

18. 624 N/C and at an angle of −22.4◦ from the +x− axis.

1. 7500V
2. 1.5 m/s

1. 6.4×10−17 N
2. 1300V
3. 2.1×10−16 J
4. 2.2×107 m/s

19. (b) 0.25m (c) FT = 0.022 N (d) 0.37µC

Ch 13: Electric Circuits – Batteries and Resistors

1. 1. 4.5C
2. 2.8×1019 electrons
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1. 0.11 A
2. 1.0 W
3. 2.5×1021 electrons
4. 3636 W

1. 192 Ω

2. 0.42 W

1. 5.4 mV
2. 1.4×10−8 A
3. 7.3×10−11 W, not a lot
4. 2.6×10−7 J

2. left = brighter, right = longer

1. 224 V
2. 448 W
3. 400 W by 100 Ω and 48 W by 12 Ω

3. (b) 8.3 W
4. 0.5A
5. .
6. 0.8A and the 50 Ω on the left

1. 0.94 A
2. 112 W
3. 0.35 A
4. 0.94 A
5. 50,45,75 Ω

6. both 50 Ω resistors are brightest, then 45 Ω, then 75 Ω|

1. 0.76 A
2. 7.0 W

7. (b) 1000 W
8. .

1. 9.1 Ω

2. 29.1 Ω

3. 10.8 Ω

4. 26.8 Ω

5. 1.8A
6. 21.5V
7. 19.4V
8. 6.1V
9. 0.24A

10. 16 kW

1. 3.66 Ω

2. 0.36A
3. 1.32 V

9. .
10. .
11. .
12. .
13. .

363

http://www.ck12.org


29.1. Appendix A: Answers to Selected Problems (3e) www.ck12.org

14. .
15. (a) 10V

Ch 14: Magnetism

1. No: if v = 0 then F = 0; yes: F = qE
2. .
3. .

1. Into the page
2. Down the page
3. Right

4. Both pointing away from north
5. .
6. .
7. 7.6 T, south
8. Down the page; 60 N

1. To the right, 1.88×104 N
2. 91.7 m/s
3. It should be doubled

9. East 1.5×104 A
10. 0.00016 T; if CCW motion, B is pointed into the ground.
11. 1.2×105 V, counterclockwise

1. 15 V
2. Counter-clockwise

1. 2×10−5 T
2. Into the page
3. 2.8 N/m
4. CW

1. 2.42×108 m/s
2. 9.69×10−12 N
3. .0055 m

12. E/B

1. 8×10−7 T
2. 1.3×10−6 C

1. 0.8 V
2. CCW
3. .064 N
4. .16 N/C
5. .13 w

1. 1.11×108 m/s
2. 9.1×10−30 N << 6.4×10−14 N
3. .00364 T
4. .173 m
5. 7.03×1016 m/s2
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6. 3.27◦

13. 19.2 V

1. 8.39×107 m/s
2. 2.68×10−13 N,−y
3. 2.95×1017 m/s2

4. .00838 m
5. 1.68×106 N/C
6. 16,800 V

1. 1.2×10−6 T,+z
2. 1.5×10−17 N,−y
3. 96 N/C,−y

Ch 15: Electric Circuits—Capacitors

1. .

1. 4×107 V
2. 4×109 J

2. .

1. 100 V
2. A greater voltage created a stronger electronic field, or because as charges build up they repel each other

from the plate.

3. 21 V, V is squared so it doesn’t act like problem 4

1. 3.3 F
2. 54 Ω

1. 200 V
2. 5×10−9 F
3. 2.5×10−9 F

1. 6V
2. 0.3A
3. 18V
4. 3.6×10−4C
5. 3.2×10−3J
6. i) 80µF ii) 40µF iii) 120µF

1. 26.7µF
2. 166.7µF

1. 19.0×103 N/C
2. 1.4×10−15 N
3. 1.6×1015 m/s2

4. 3.3×10−11 s
5. 8.9×10−7 m
6. 5.1×10−30
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Ch 16: Electric Circuits—Advanced

1. 1. 4.9×10−5 H
2. −9.8×10−5 V

2. Zero

1. Yes
2. No
3. Because they turn current flow on and off.

1. 0.5 V
2. 0.05 A
3. 0.05 A
4. 5.5 V
5. 8.25V
6. 11×

1. On
2. On
3. On,on,o f f ,on,o f f ,o f f ,on,on

3. (b) 10.9µ F (c) 195 Ω (d) 169 Ω (e) 1.39 A (f) −42◦ (g) 115Hz

Ch 17: Light

1. .
2. .
3. 2200 blue wavelengths
4. 65000 x−rays
5. . 6×1014 Hz6.3.3 m
6. .
7. .
8. (b) vacuum air (c) 1.96×108 m/s
9. 6.99×10−7 m;5.26×10−7 m

10. .
11. .
12. Absorbs red and green.
13. 25◦

14. .
15. 33.3◦

1. 49.7◦

2. No such angle
3. 48.8◦

16. (b) 11.4 m (c) 11.5 m
17. 85 cm
18. (c) +4 units (e) −1

1. 6 units
2. bigger; M = 3
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19. (c) 1.5 units (d) 2/3
20. (c) 3 units (e) −2/3
21. (c) 5.3 units
22. .
23. (b) 22.5 mm
24. .
25. 32 cm

1. 10.2◦

2. 27 cm
3. 20 cm

26. (a) 0.72 m
27. .
28. 54 cm,44 cm,21 cm,8.8 cm
29. .
30. 13.5◦

31. 549 nm

Ch 18: Fluids

1. 0.84
2. 1.4×105 kg

1. 90% of the berg is underwater
2. 57%

3. (b) 5.06×10−4 N (c) 7.05 m/s2

4. 4.14 m/s
5. 6. 40 coins
6. (b) upward (c) 4.5 m/s2 (d) Cooler air outside, so more initial buoyant force (e) Thin air at high altitudes

weighs almost nothing, so little weight displaced.
7. (a) At a depth of 10 cm, the buoyant force is 2.9 N (d) The bottom of the cup is 3 cm in radius

1. 83,000 Pa
2. 104 N
3. 110 N

1. 248 kPa
2. 591 kPa
3. 1081 kPa

8. .
9. .0081

1. 12500 J/m3

2. 184 kPa
3. 1.16 kW
4. 2.56 kW
5. 11.8 A
6. $12.60

1. 611 kPa
2. 6 atm
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10. (b) 500,000 N

1. 27 m/s2,(2.7 g) upward
2. 1600 N
3. 2200 N

1. 10 N
2. 10.5 N
3. 11 N
4. 11 N

11. (a) “The Thunder Road” (b) 2.0 m (note: here and below, you may choose differently) (c) 33.5 m3 (e)
3.5 million N (f) 111 MPa

Ch 19: Thermodynamics and Heat Engines

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. .
9. .

10. .
11. .
12. .
13. .
14. .
15. .
16. .
17. .
18. 517 m/s
19. 1.15×1012 K
20. .
21. 40 N
22. ≈ 1028 molecules

1. 21,000 Pa
2. Decreases to 61,000 Pa
3. 5.8 km

1. No
2. allowed by highly improbable state. More likely states are more disordered.

1. 8.34×1023

2. 6.64×10−27 kg
3. 1600 m/s
4. 744 kPa
5. 4.2×1020 or 0.0007 moles
6. 0.00785 m3
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1. 1.9 MW
2. 0.56 MW
3. 1.3 Mw

1. 54%
2. 240 kW
3. 890 kW
4. 590 kW
5. 630 kg

1. 98%
2. 4.0%
3. 12%

23. 14800 J
24. 12,000 J
25. (b) 720 K,300 K,600 K (c) isochoric; isobaric (d) C to A; B−C (e) 0.018 J
26. (b) 300 K,1200 K

1. 1753 J
2. −120 J
3. 80 J
4. 35 J
5. −100 J,80 J,80 J

Ch 20: Special and General Relativity

1. longer
2. ?= ∞, the universe would be a dot
3. 76.4 m,76.4 m
4. .
5. ?= 1.002
6. 9.15×107 m/s
7. 2.6×108 m/s

1. 0.659 km
2. 22.4
3. 4.92×10−5 m/s
4. 14.7 km

8. 2900 m
9. 1.34×10−57 m

10. 0.303 s
11. 2.9×10−30kg, yes harder to accelerate

1. f
2. c

12. 4.5×1016 J;1.8×1013 softballs

1. 1.568×10−13 J
2. 3.04×106 J
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Ch 21: Radioactivity and Nuclear Physics

1. .
2. .
3. .
4. .
5. .

1. Substance A decays faster than B
2. Substance B because there is more material left to decay.

1. 219
88Ra→215

86Rn+4
2He

2. 158
63Eu→158

64Gd+0
−1e−

3. 53
22Ti→53

23Va+0
−1e−

4. 211
83Bi→207

81Tl+4
2He

1. 5×1024 atoms
2. Decay of a lot of atoms in a short period of time
3. 2.5×1024 atoms
4. 1

2
5. 26.6 minutes

6. The one with the short half life, because half life is the rate of decay.

1. Substance B = 4.6 g and substance A = 0.035 g
2. substance B

7. 1.2 g
8. 125 g
9. 0.46 minutes

10. t = 144,700 years
11. 0.0155 g
12. 17 years
13. 49,000 years

Ch 22: Standard Model of Particle Physics

1. strange
2. some type of meson
3. Electron, photon, tau. . .
4. Neutron, electron neutrino, Z0

5. Neutron, because it doesn’t have electrical charge
6. No, because it doesn’t have electrical charge
7. Two anti-up quarks and an anti-down quark
8. Lepton number, and energy/mass conservation
9. Yes, W+,W−, because they both have charge

10. The weak force because it can interact with both quarks and leptons
11. Yes; a,b,c,e; no; d,f
12. The standard model makes verifiable predictions, string theory makes few verifiable predictions.
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Ch 23: Feynman Diagrams

1. Allowed: an electron and anti-electron(positron) annihilate to a photon then become an electron and anti-
electron(positron) again.

2. Not allowed: electrons don’t go backward though time, and charge is not conserved
3. Not allowed: lepton number is not conserved

1. Allowed: two electrons exchange a photon
2. Not allowed: neutrinos do not have charge and therefore cannot exchange a photon.

1. Allowed: an electron and an up quark exchange a photon
2. Not allowed: lepton number not conserved

4. Not allowed: quark number not conserved
5. Allowed: electron neutrino annihilates with a positron becomes a W+ then splits to muon and muon neutrino.
6. Allowed: up quark annihilates with anti-up quark becomes Z0, then becomes a strange quark and anti-strange

quark
7. Not allowed: charge not conserved
8. Allowed: this is a very rare interaction
9. Not allowed: electrons don’t interact with gluons

10. Not allowed: neutrinos don’t interact with photons
11. Allowed: the electron and the positron are exchanging virtual electron/positron pairs
12. Allowed: this is beta decay, a down quark splits into an up quark an electron and an electron neutrino via a

W− particle.
13. Allowed: a muon splits into an muon neutrino, an electron and an electron neutrino via a W− particle.

Ch 24: Quantum Mechanics

1. 1. 6.752×10−26J,2.253×10−34 kgm/s
2. 5.96×10−20J,1.99×10−28 kgm/s
3. 4.90×10−28J,1.63×10−36 kgm/s

1. 1.94 eV,1.04×10−27 kgm/s
2. 12.7 eV,6.76×10−27 kgm/s
3. 5.00 eV,2.67×10−21 kgm/s

1. .0827 nm
2. 4.59×10−4 nm
3. .942 nm

2. 1.03×10−20 m

1. 36 nm
2. no
3. 380 nm,73 nm,36 nm,92 nm,39 nm

3. .80 V
4. .564 nm

1. .124 nm
2. .00120 nm

5. 24,600 m/s
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6. 1.84×108 m/s

1. .491 m/s
2. 3.14107 J
3. 64 Mw
4. 1.55 pm

7. 3.27 eV
8. .
9. (b) 15 (c) 182 nm,188 nm,206 nm,230 nm

10. −10.3 eV,−3.82 eV,−2.29 eV,−1.83 eV

1. 4.19×107 m/s
2. 1.70×10−11 m
3. 1.95◦

4. .068 m

1. 1.89 V
2. 1.60 A
3. 1.25 Ω

1. 4.40×10−24 kgm/s
2. 1.17×10−24 kgm/s
3. 3.23×10−24 kgm/s
4. 3.76×107 m/s

1. 1.1365×10−22 kgm/s
2. 5.860 pm
3. 242 Cu→4 He+2 38Pu
4. 238.0497 amu
5. 17.7 cm
6. −y
7. +y,34.2 N/C

Ch 25: Global Warming

1. (a) 5.1×1014 W (b) 1.8×1015 kWh (c) 1.6×1022 J (d) 7.0×1015 J (e) About 2.3 million bombs
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CHAPTER 30Equations and Fundamental
Constants Version 2

Simple Harmonic Motion and Wave Motion

T = 1/ f

Tsp = 2π

√
m
k

v = λ f

TP = 2π

√
L
g

fn =
nv
2L

nodes at both ends

fn =
nv
4L

(n is odd)node at one end

fbeat = | f1− f2|

vsound = 343 m/s (in air at 20 C)

A note: 440 Hz

C note: 524 Hz

D note: 588 Hz

E note: 660 Hz

G note: 784 Hz

Fluids and Thermodynamics

3/2 kT =<
1
2

mv2 >avg

P = F/A

P = P0 +ρgh

4P+4(ρgh)+4
(

1
2

ρv2
)
= 0

φ = A · v
◦C =◦ K +273.15
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PV = NkT = nRT

Fbuoy =−(ρwaterVdisplaced)g

Qin =W +4U +Qout

W = P4 V

k =
1
2

ρv2;u = ρgh

η =W/Qin;ηCarnot = 1− (Tlow/Thigh)

k = 1.381×10−23 J/K

ρair = 1.29 kg/m3

R = 8.315 J/mol-K

ρwater = 1000 kg/m3

PAT MOSPH = 101,000 N/M2

Navo = 6.022×1023 mol−1

Properties of Fundamental Particles

mproton = 1.6726×10−27 kg

qelectron =−qproton =−1.602×10−19 C

rhydrogen atom ≈ 0.529×10−10 m

melectron = 9.109×10−31 kg

1 amu = 1.6605×10−27 kg = 931.5 Mev/c2

4 E =4 mc2

mneutron = 1.6749×10−27 kg

Radioactivity, Nuclear Physics, and Quantum Mechanics

(4x)(4p)≈ h/4π

λ = h/p

N = N0
(

1
2

)
t/tH

1 ev→ 1240 nm

(energy of a photon)

374

http://www.ck12.org


www.ck12.org Chapter 30. Equations and Fundamental Constants Version 2

(4E)(4t)≈ h/4π

Ephoton = h f = pc

Kmax = qV = h f +φ

h = 6.626×10−34 J.s
AZ = element Z with A nucleons

14C : tH = 5,730 years(half life = th)
239Pu : tH = 24,119 years

Eo =−13.605 ev(Hydrogen ground state)

Light

λblue ≈ 450 nm

λgreen ≈ 500 nm

λred ≈ 600 nm

ni sin(θi) = nr sin(θr)

c = 2.998×108 m/s

mλ = dsin(θ)

nair ≈ nvacuum = 1.00

nwater = 1.33

n = c/vmaterial

primary: Red, Green, Blue

secondary: Magenta, Cyan, Yellow

1
f
=

1
do

+
1
di

M = hi/ho = di/do

Electricity and Magnetism

FE = k q1q2/r2

E = FE/q

E =−4V/4x
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FB = qv×B = qvBsin(θ)

Bwire = µoI/2πr

Fwire = `(I×B) = ` IBsin(θ)

(direction: RHR)

(direction: RHR)

(direction: RHR)

k = 8.992×109 N · m2/C2

µo = 4π×10−7 T · m/A

φ = BAcos(θ)

Uel = q4V

Point charges: E(r) = kq/r2 and V (r) = kq/r

(k = 1/4πεo where εo = 8.854×10−12 C2/ N · m2)

V =−4φ/4t = Blv

Electric Circuits

4V = IR

I =4q/4t =4V/R

τ = RC

P =4E/4t = I4V = I2R =V 2/R

R = ρl/A

V =−L(4I/4t)

Q =C4V

Cparallel plate = kεA/d

Cparallel =C1 +C2 + . . .

Rseries = R1 +R2 + . . .

1/Rparallel = (1/R1)+(1/R2)+ . . .

1/Cseries = (1/C1)+(1/C2)+ . . .
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TABLE 30.1:

Name Symbols Unit Typical examples
Voltage Source 4V volt (V ) 9 V (cell phone

charger); 12 V (car);
120 VAC (U.S. wall
outlet)

Resistor R Ohm (Ω) 144Ω(100 w,120v bulb);1kΩ (wet skin)

Capacitor C Farad (F) RAM in a computer,
700 MF (Earth)

Inductor L Henry (H) 7 H (guitar pickup)

Diode by type none light-emitting diode
(LED); solar panel

Transistor by type none Computer
processors

Equation Sheet

Mathematics
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sin(θ) = b/c→ b = c · sin(θ)

cos(θ) = a/c→ a = c · cos(θ)

tan(θ) = b/a→ b = a · tan(θ)

c2 = a2 +b2

180◦ = π radians

Ccircle = 2πR

Acircle = πR2

Vsphere = (4/3)πR3

Vcylinder = πR2h

If X is any unit, then . . .

1 mX = 0.001 X = 10−3 X

1µX = 0.000001 X = 10−6 X

1 nX = 0.000000001 X = 10−9 X

1 kX = 1000 X = 103 X

1 MX = 1000000 X = 106 X

1 GX = 1000000000 X = 109 X

If ax2 +bx+ c = 0, then . . .

x =
−b±

√
b2−4ac

2a

% difference = |(measured – accepted) / accepted | ×100%

vector dot product: a ·b = ab cosθ (product is a scalar)—θ is angle between vectors

vector cross product: a×b = ab sinθ (direction is given by RHR)

Kinematics Under Constant Acceleration

4x = x f inal− xinitial

4 (anything) = final value− initial value

vavg =4x/4t

aavg =4v/4t
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x(t) = x0 + v0t +
1
2

axt2

v(t) = v0 +at

v2 = v2
0 +2a(4x)

(x = x0 and v = v0 at t = 0)

g = 9.81 m/s2 ≈ 10 m/s2

1 km = 1000 m

1 meter = 3.28 ft

1 mile = 1.61 km

Newtonian Physics and Centripetal Motion

a = Fnet/mFg = mg

Fnet = ΣFall f orces = ma

fk = µkFNFsp =−k(4x)

fs ≤ µsFNFG = Gm1m2/r2

FC = mv2/r

G = 6.672×10−11 N · m2/kg2

1 kg = 1000 g = 2.2 lbs

1 N = 1 kg · m/s2

Momentum and Energy Conservation

Σpinitial = Σp f inal

Einitial = E f inal

E = K +U +W

p = mv

K = 1/2 mv2
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Favg =4p/4t

Ug = mgh

Usp =
1
2

k(4x)2

Ug =−Gm1m2/r

W = F ·4x

P =4W/4t

P = F · v

1 J = 1 N · m

1 W = 1 J/s

1 food Calorie = 4180 J

1 ev = 1.602×10−19 J

1 kwh = 3.600×106 J

Rotational Motion

d = rθ

v = rω

a = rα

ω = 2π/T

θ(t) = θ0 +ω0t +
1
2

αt2

ω(t) = ω0 +αt

ω
2 = ω

2
0 +2α(4θ)

aC =−rω
2

τ = Iα

L = r× p = Iω

τ = r×F =4L/4t

K = 1/2Iω
2
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Iring about cm = MR2

Idisk about cm =
1
2

MR2

Irod about end = (1/3)ML2

Isolid sphere about cm = (2/5)MR2

Astronomy

P∗ = 4×1026 W

M∗ = 1.99×1030 kg

R∗ = 6.96×108 m

1 light-year(ly) = 9.45×1015 m

MEarth = 5.97×1024 kg

REarth = 6.38×106 m

Earth−Sun distance = 1.496×1011 m

MMoon = 7.35×1022 kg

RMoon = 1.74×106 m

Earth−Moon distance = 3.84×108 m
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CHAPTER 31 Random Walks 1
Chapter Outline

31.1 INTRODUCTION
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31.1 Introduction

This chapter provides an introduction to the random walk, a model widely used in physics and other fields. It explains
the theory behind the basics of one-dimensional random walks, and the next chapter then shows how to model them
in Python — an open source programing language widely used within the scientific community.

Much of modern physics relies on computer simulations for results, yet this field is largely left out of high school
physics classrooms. It is the goal of this chapter to bridge this gap by providing instructions for running simple
models side by side with the theory they mirror. In this sense, the chapter is both an overview of random walks and
a short introduction to computational programing.

One-Dimensional Random Walks

This type of random walk is conceptually a very simple model. Imagine starting at a point on a line, and then taking
a step either to the left or to the right every couple of seconds. This is a typical example of a one-dimensional random
walk. Which direction you pick, how big of a step you take, and how often you take steps are all parameters that can
differentiate different random walks, but they all have these common basic features.

The ’random’ in the title of this chapter refers to the fact that you will pick the direction of your steps randomly.
Since the simplest practical idea of randomness that we have is a two-sided coin, we interpret our random walk in
terms of that model. Specifically, each time a coin is flipped, the person flipping it takes a step — to the right if it
lands on heads, and to the left if it lands on tails:

Notice that the coin doesn’t have to be fair: we simply said that there is P probability of it landing on tails, and
therefore 1−P probability of it landing on heads. This probability is one of the parameters mentioned above.
Here’s a list of important ones for this type of random walk:

One-dimensional Random Walk Parameters

• Probability of picking left/right (P).
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• Step size (L).
• Number of steps (N).

We can now describe our model in the terms above. The person flips a coin, which lands on heads or tails according
to the probability p. After each flip, he takes a step of length L in the direction decided by the coin. After N total
flips, he stops and records his position.

In general , the value L can vary from step to step, but in this chapter, we’re going to focus on random walks with
constant step size, which we can just set to L = 1 without losing any generality.

Question
Why can we do this?

Answer
Because as long as step sizes are constant, our results would only be off by a proportionality constant for other
random walks.

Bookkeeping

Question
Consider a two step random walk (that is, N = 2). What are the possible outcomes of such a random walk?
How can we keep track of these?

Answer
In a two step random walk, either the steps are in the same direction, or in opposite directions. If they are
in the same direction, the walker will be either two to the left, or two to the right of her original position.
Alternatively, if they are in the same direction, the walker will remain at her starting position at the end of the
walk. We can represent this on a graph where we count the number of steps on the x-axis, and the position on
the y-axis (it might seem more natural to use the horizontal axis for position — due to the left/right dichotomy
— but since the number of steps is essentially a ’time’ variable and time is generally the independent variable,
we will follow convention). All the possibilities are represented below:
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Question
What is the probability of each of the three possible outcomes?

Answer
The probability of landing two steps to the right is the same as that of rolling two heads with the coin above.
This equals P× P = P2. Analogously, the probability of landing two steps to the left is (1− P)2. The
probability of landing in the original position is equal to getting one heads and one tails. You might think
this is P(1−P), but it’s slightly subtler: since the order of the heads and tails doesn’t matter, there are two
ways to get this outcome: heads first, tails second, or vice versa (right then left, or left then right). Therefore
we have to add the probability of one such outcome, P(1−P), to the probability of the other, (1−P)P. So the
result is 2×P(1−P).

Note that P2 +2(P)(1−P)+(1−P)2 = 1. Why is this important and relevant?

Motivation

You might ask at this point: what’s the meaning of this model? Can something so simple actually be useful? And if
the model is useful, what exactly are we trying to find?

These are good questions. First, it turns out that the model is useful; first, because many real world phenomena
— stock prices, gambling wins/losses, certain quantum phenomena — can actually be modeled as one-dimensional
random walks. More importantly, however, many of the one-dimensional results happen to transfer easily to two and
three-dimensional random walks, which actually model a much greater range of phenomena.

Question
What situations can be accurately modeled by two and three-dimensional random walks?
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Answer
Two dimensional walks can be used to model the spread of insects — mosquitoes, for instance — over an
area, while three-dimensional random walks accurately describe the behavior of gas atoms under a wide range
of conditions.

Finally, let’s try to answer the last question: what exactly are we trying to find here? Remember, the usefulness of
any model is measured by its applications: if you model the weather, hopefully you will be able to predict it using
your model.

Let’s look at the applications we listed above, and think of relevant questions. In terms of stock prices, one might
ask: "what is the probability that a given stock will be x dollars above or below its starting point after a given period
of time? In the random walk model, this translates to: What is the probability that a walker will be a distance X from
the origin after a given number of steps?

In terms of gas molecules, we might ask: if you break a beaker of some gas, how quickly will the gas spread through
a room or area? In random walk terms, this becomes: How quickly does the walker tend to move away from the
origin. This is a model of diffusion.

Finally, in our insect model, we might ask: how long will it take, on average, for some infectious insects to reach an
area some distance away from their starting point? In our model, this becomes: How long will it take, on average,
for the walker to reach some distance from the origin?

To recap, some important questions we might try to answer about the random walk model are:

1. What is the probability that a walker will be a distance D from the origin after a given number of steps?
2. How quickly does the walker tend to move away from the origin?
3. How long will it take, on average, for the walker to reach some distance from the origin?

Note: The underlying idea behind all these questions can be summarized in the following manner: What is the net
effect, on average, of the canceling out of steps in opposite directions in a random walk? Understanding this
will not only help us with the mathematics that follows, but is also key to generalizing the model to two and three
dimensions.

We will only consider the first question theoretically, but the other two can be explored using the computational
models of the next chapter.

What are we looking for?

Let’s look at the first of the questions above in more mathematical detail — we would like to find is the probability
that after N flips, or steps, the walker is D steps to the right (or left) of the origin (starting point)? Remember, at any
given step the walker steps to the right if the coin lands on heads (probability P, which is now known) and left if the
coin lands on tails (probability 1−P).

Fair Coin Three-Step Case

In physics derivations, it’s often possible to obtain an intuition about the right way to find a general result or formula
by considering simple specific cases first. We will use this method here — let’s look at the possible outcomes (that
is, step sequences) of a three step random walk where P = 1/2 (it’s a fair coin, the walker is equally likely to step
left or right at every step). The various possibilities for this case are illustrated below:
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The first case is equivalent to flipping three heads in a row and therefore taking three right step, the second to flipping
the sequence heads, tails, heads, and so on. Since in this case the coin is fair, the eight outcomes (step combinations)
shown above are equally likely to occur: they each have a probability of (1/2)3 = 1/8.

These outcomes, however, do not all result in different end locations (the four low arrows) for the walker: this is
determined by the difference between the number of steps taken to the right and the number taken to the left. So
while only one outcome corresponds to an end location of three steps to the right or three to the left, three outcomes
correspond to an end location of one step to the right or one to the left, analogously to our calculations in the
bookkeeping section above. So the eight equally likely outcomes result in four possible end locations that are clearly
not equally likely. This is even clearer when we look at a graph of the possible walks, where we can trace the paths
that lead to the same end locations:

Question
Show each of the eight possible step combinations illustrated earlier on the figure above.

As we noted earlier, the probability of stopping at a particular end location (such as one step to the right of the
starting point) occurs will equal to the sum of the probabilities of the outcomes that lead to it. This is important, and
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bears repeating:

Probability of a particular end location

P(End Location) = ∑Probabilities of outcomes that lead to that location

If all such outcomes are equally likely, then

P(End Location) = (Probability of a single outcome)× (Number of outcomes)

Therefore, the probability of ending one step right is:

1/8+1/8+1/8 = 3×1/8 = 3/8

This reasoning allows us to find the probabilities of the other possible end locations as well, noted below the
arrows on the graph above. A grouping of possible end locations and their respective likelihoods is an example
of a probability mass function. Let’s define this important concept.

Probability Mass Function
A list of events with associated probabilities.

In more mathematical language, we can represent of a set of events as

(Event1,Event2,Event3, . . . ,Eventi)

.

The associated probabilities, meanwhile, are written as

(P(Event1),P(Event2),P(Event3), . . . ,P(Eventi))

.

In our example, the end locations of the three step random walk described above will can be written as

(3R,1R,1L,3L)

and their probabilities as

(1/8,3/8,3/8,1/8)

.

We can plot this distribution on a graph where final displacement (alternatively, number of steps — the two quantities
will be equal if we set the step lengths to 1, which we can with no loss of generality) from the origin is on the x-axis,
while its probability is on the y-axis:
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Above, we have answered the question posed at the beginning of this section for the three-step case. That is, we have
completely determined what the likelihood of the walker being in any possible location is at the end of this walk.

Question
Find the probability mass function for a single roll of a fair die.

Answer
The outcomes are simply the possible numbers, since it is a fair die, they have equal probability: 1/6.
Therefore the PMF is

(1,2,3,4,5,6);(1/6,1/6,1/6,1/6,1/6,1/6)

Question
Why are particular outcomes (sequences of steps, not end locations) equally likely in fair-coin random walks
with any number of steps?

Answer
Since steps right and left are equally likely, any particular sequence of N steps has a probability of (1/2)−N .
(Why? Think of the two-step example given in the beginning of the chapter: if p = 1/2

P2 = (1−P)2 = P(1−P) = (1−P)(P) = 1/4

.

Fair Coin General Case

Now let us try to generalize these results to to a random walk with P = 1/2 and N steps. The intuition we obtained
from considering the simple case above can be summarized as follows: to find the probability mass function of the
end location of a random walker, one should:

389

http://www.ck12.org


31.1. Introduction www.ck12.org

1. Consider all the possible outcomes (as we showed above, they will be equally likely)
2. Think which outcomes lead to which end locations — in particular, how many outcomes lead to a particular

end location.
3. Use the fact that

P(End Location) = (Probability of a single outcome)× (Number of outcomes)

The diagram below is analogous to the one for three steps, but now with N steps. We can divide the possibilities
into 2Nequally likely outcomes, this time each with probability 1/(2N). So, we found the first part in the left side of
the equation above.The question is, ’How many outcomes lead to a given end location, say, D steps to the right (as
posed above)?’

There is still only one outcome that leads to each of the two ’extreme’ locations, when all steps are taken either right
or left. Their probabilities are 2−N — but what about the other locations?

To find their respective probabilities, we need to remember the fact that end locations depend on the difference
between the number of steps taken to the left and right (and not their order) to pose the problem in a slightly
different way.

Let L be the number of steps taken to the left, and R to the right. Since the total number of steps is N,

N = L+R Total of steps adds to N

If the walkers winds up D to the right of the origin, she must have taken D more steps to the right than to the left:

D = R−L Total distance traveled

Solving these two equations (work through them yourself), we find that:

R = 1/2(D+N) Steps to the right

L = N−R = 1/2(N−D) Steps to the left
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We have solved for the necessary number of steps left and right in terms of known quantities, N and D. At this point
all that remains is finding how many ways there are to take 1/2(D+N) steps to the right out of a total of N steps:
this will give us the number of outcomes that lead to end location of D steps to the right.

In the three step case, for instance, ending one space right of the origin required taking two steps right and one step
left; there are three discrete ways to take two achieve this (the left step can be first, second, or third), and so three
outcomes that lead to that location.

For the case of N total steps and 1/2(D+N) steps to the right, the correct result will be given by the ’ways of
choosing’ formula from combinatorics: literally, it is the number of ways to choose 1/2(D+N) positions for the
right steps out of a total of N positions. This is written as

(
N

1/2(N +D)

)
where

(
n
k

)
=

n!
k!(n− k)!

So, according to our earlier result, the probability of finding the walker a distance D steps to the right of the origin
is given by the following formula:

P(D) = 2−N︸︷︷︸
P(one outcome)

×
(

N
1/2(N +D)

)
︸                ︷︷                ︸

Number of outcomes that lead to this end position

We have now answered our original question (finding the probabilities of various end locations) for all unbiased
(P = 1/2) random walks with constant step lengths. Again, we can plot this distribution for several different cases:
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When the number of steps becomes large, the distribution begins to look like a bell curve; here is the plot for
N = 100:

Problems

1. What is the difference, in terms of end probability distributions, between random walks with even and odd
numbers of steps?

2. Solve for the probability mass function of end locations for a four-step random walk analogously to the three-
step example above (illustrating it also). Then, graph this probability mass function.

3. Our proof for the general case can be called ’right-biased’ in two ways. This question settles both:

a. We found the probability of being D to the right of the origin, but the probability distributions were
graphed as symmetrical. First, explain why this must be true in terms of possible outcomes and end
locations. Then, show that the formula for P(D) can be used to find probabilities to the left also, that is,
prove that P(D) = P(−D) using the formula above and the definition of factorials.

b. We also found the number of outcomes that lead to an end displacement of D in terms of steps taken to
the right. Use the result from the previous part to show that using 1/2(N−D) — the number of steps to
the left corresponding to a final distance of D steps to the right — in the derivation of the general result
would not have changed it.

a. Derive the probability mass function for a biased random walk (that is, steps in one direction are more
likely than in the other, or the coin has a higher probability of landing heads (P than tails (1−P). (Hint
1: Does the number of outcomes for a specific end location change?) (Hint 2: ALL the outcomes will no
longer be equally likely, but what about outcomes that lead to specific end locations?) (Hint 2.5: every
outcome that leads to a specific location HAS to have the same number of steps left and right).

b. Graph a few of these distributions.
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