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INTRODUCTION

It is well recognized that breast cancer is a het-
erogenous disease, with variation in clinical
behavior, and that the biological nature of the
disease and clinical outcome are closely inter-
linked. Management of the breast cancer
patient is now a carefully planned exercise
using a variety of factors which are associated
with longer or shorter survival (prognostic fac-
tors), and/or can aid selection of relevant sys-
temic therapy (predictive factors). The aim
of this second edition of Prognostic and
Predictive Factors in Breast Cancer is to pro-
vide up-to-date information and views on
those factors used clinically and present data
on approaches that are presently research but
could be the tools for the future. The speed
with which things progress is exemplified by
microarrays; in the last edition (2003) these
were discussed as newer approaches for the
future, microarrays are now in clinical trials.

BACKGROUND

The baseline evidence for the variation in
breast cancer behavior comes from studies
from many years ago of women who had no
treatment and of those that were before the
advent of systemic (i.e. adjuvant) treatment
following surgery. Bloom et al1 reported on a
series of 250 women seen at the Middlesex
Hospital, London, UK between 1805 and
1933; 74% had advanced (stage IV) disease at
the time of admission but 18% of these were
still alive at 5 years without any treatment. The
number of patients is small but this demon-
strates the variation in the natural history of

untreated breast cancer. The importance of
having large series of patients to derive valid
information was appreciated; it is from pre -
adjuvant therapy studies that amassed infor-
mation from one or more centers that data on
the clinical importance of tumor size and
node status comes.2–7 A criticism of some of
the studies, e.g. The National Cancer Institute
Surveillance, Epidemiology and End Results
(SEER) Program,7 is that staging was based on
a combination of clinical and pathological
data, and that the reporting pathologists data
was used with no review by one or a small
number of individuals.

To gain important clinically relevant infor-
mation about outcome it is necessary for stud-
ies to have sufficient numbers of pathologically
staged patients who are categorized by age, sur-
gical and adjuvant treatment, and whose can-
cers are assessed clinically and pathologically
using standardized, clearly defined criteria.
The derivation of the Nottingham Prognostic
Index is an excellent example of this.8 It was
established by the long-term follow-up in a dedi -
cated breast unit of patients who did not
receive adjuvant therapy, had a standard man-
agement, and whose cancers were assessed
using defined criteria9,10 by a small number of
pathologists.

The drive to find newer/different markers of
breast cancer behavior has resulted in innumer-
able studies, many of limited value. Evaluation
guidelines for breast cancer prognostic factors
were proposed in 199111 and still apply today:
the factor should possess clear biological sig-
nificance; the study should be defined as a
pilot, definitive or confirmatory; there should

Prognostic and predictive factors
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be an adequate sample size for meaningful
calculations; the patient population must be
defined and not biased, for example, in rela-
tion to size, node status or age; there must be
methodological validation; clinical cut-off
values must be defined; assays must be repro-
ducible. Problems with tumor-marker pro  g -
nostic studies (generally, not just breast) have
been recognized in reporting recommenda-
tions (REMARK),12 that were published simul-
taneously in US and European journals in
2005. These also emphasize the need for
information about study design, preplanned
hypotheses, patient and specimen characteris-
tics, assay methods, and statistical analysis
methods.

The American Society of Clinical Oncology
first published evidence-based clinical prac-
tice guidelines for the use of tumor markers in
breast cancer in 1996. In the 2007 update,13 13
categories of markers were considered, but
not all had enough evidence to support rou-
tine use in clinical practice. Those that did
included estrogen receptor (ER) and proges-
terone receptor (PR) (see Chapter 9) human
epidermal growth factor receptor 2 (HER2)
(see Chapter 13), and also certain gene
expres sion assays (see Chapter 11).

USE OF PROGNOSTIC AND
PREDICTIVE FACTORS IN
CLINICAL PRACTICE

The standard prognostic factors such as
tumor size and node status provide important
information about likely patient outcome, but
within the good prognosis groups such as axil-
lary node-negative cases there can be differ-
ences in behavior. There is increasing
emphasis on separating defined prognostic
groups into low and high risk,14 and using this,
along with predictive markers, for the selec-
tion of adjuvant systemic therapy. Expert con-
sensus meetings such as those held at St Gallen
consider the primary therapy of early breast
cancer and make recommendations which are
published every 2 years or so.15–17 The Early
Breast Cancer Trialists’ Collaborative Group
undertake quinquennial overviews of the

randomized trials in breast cancer, with
the last overview being published in 2005,18

and these provide data on recurrence and
mortality rates in relation to therapy. Using
this, and in conjunction with the Nottingham
Prognostic Index (NPI),8 a prognostic table
has been devised19,20 and updated21 to provide
information about the benefit or not of poly-
chemotherapy and endocrine therapy to
individual patients. A National Health Service
(NHS) R&D Health Technology Assessment22

considered the NPI to be a useful clinical
tool, and that additional factors may enhance
its use.

Web-based tools are being used more exten-
sively – www.adjuvantonline.com is one used
by many clinicians for estimating the benefit
of adjuvant therapy for women with stage I
and II breast cancers. A population-based vali -
dation of the model (ADJUVANT!) showed it
to perform reliably, although for women
younger than 35 years of age, or with known
adverse prognostic factors such as lympho -
vascular invasion, adjustments of risks were
required.23

For these tools to be effective there is a
need for the factors that form them to be
derived accurately. Determination of tumor
size, type, grade, node status, presence or not of
lymphovascular invasion is the remit of the
pathologists who are part of the breast multidis-
ciplinary team, and this is discussed in Chapter
2. In order to ensure reproducibility, guide-
lines have been produced,24 and quality assur-
ance of the different parameters is
under taken in the UK. Pathologists are very
much involved with the analysis of estrogen
and progesterone receptors (Chapter 9) and
HER2 (Chapter 13), which are the determi-
nants for the selection of endocrine therapy
and trastuzumab, respectively, now both used
as adjuvant therapies as well as for metastatic
disease. There are many factors which can
affect performance of assays, and interpreta-
tion,25,26 and whilst there are quality assurance
schemes for the tests, quality assurance for
interpretation has yet to be introduced.

Much of the above has related to the use of
systemic therapy. However, local recurrence

2 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER
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following conservative surgery for breast cancer
is also important and the various therapeutic
factors are discussed in Chapter 4, along with
the surgical and pathological deter minants of
local recurrence.

MICROMETASTATIC AND
METASTATIC DISEASE

The main reason for using adjuvant therapy
after surgery is to treat micrometastatic dis-
ease, and so prevent metastases occurring at a
later date. Our ability to monitor patients for
micrometastases and understand their signifi-
cance is still more restricted to research than
open clinical application.

The introduction of sentinel node procedures
has increased awareness of minimal spread (iso-
lated tumor cells and micrometastases) to axil-
lary lymph nodes, but its significance is still
unresolved and this is discussed in Chapter 6.

The methods available for detection of dis-
seminated and circulating tumor cells, and
their clinical significance, are the focus of
Chapter 7. Chapter 8 reviews progress in the
investigation of the clinical utility of plasma
DNA and RNA analysis for determining
breast cancer behavior. It also describes how
data from studies of tumor-specific alterations
in circulating cell-free DNA indicate that
analysis of nucleic acids in blood could
become a diagnostic test.

BREAST CANCER BIOLOGY AND
BEHAVIOR

Malignant cells are characterized by altered
growth control (both proliferation and apop-
tosis), and the ability to invade and metasta-
size. Research into the many components of
these processes could identify novel prognos-
tic and predictive markers.

The prognostic value of proliferation, apop-
tosis, cell cycle and apoptotic proteins is dis-
cussed in Chapter 3, with the conclusion that
although there are many ways to assess pro -
liferation, mitosis counting in histological
preparations is the most reproducible, with
independent prognostic value. Methodological

fine-tuning and larger prospective trials are
needed to establish the clinical value of other
markers.

There is growing understanding of the
importance of the interactions between cells,
and between cells and the surrounding stro-
mal environment. Breast cancers frequently
exhibit altered cell adhesion molecule expres-
sion, have altered matrix protein expression,
changes in the cellular components of the tumor
microenvironment, and extensive remodeling of
the stroma. Chapter 5 focuses on key changes
in cell adhesion molecules and stromal com-
ponents, which have been shown to modu-
late breast cancer cell function, the potential
for such features to act as prognostic and
predictive factors for behavior, and the oppor-
tunity to use such alterations as therapeutic
targets.

p53 is well recognized as ‘guardian of the
genome’, and alterations to the gene are com-
mon in cancers, including breast cancer. The
precise clinical importance of p53 in breast
cancer as a prognostic factor or predictor of
disease response remains controversial and is
discussed in Chapter 12, which concludes that
substantial progress has been made in the
understanding of p53 and therapeutic bene-
fits are awaited.

ENDOCRINE RESPONSE AND
RESISTANCE

As already indicated, determination of ER is
critical for the selection of those patients who
could benefit from endocrine treatment
(Chapter 9). However, not all patients who
have ER-positive cancers will obtain a response
and a major clinical problem is the develop-
ment of acquired resistance. Increased under-
standing of ER structure and function,
knowledge of the two forms of ER (α and β)
and their variant forms, and of the interactions
between ER and growth factor receptors, and
their signaling pathways (Chapters 9 and 10) is
resulting in an important body of data which
could result in the identification of clinically
relevant predictors of endocrine response and
resistance.

AN OVERVIEW   3
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GENE EXPRESSION PROFILING

In the first edition, gene expression profiling
was referred to in the Introduction, but now
merits a chapter. The initial publications were
concerned with subcategorization of breast
cancers,27–29 but soon the emphasis was on
identifying expression profiles relating to pro g-
nosis and the prediction of response to
endocrine therapy and chemotherapy, and
these are discussed in Chapter 11. Genomic
prognostic tests are now available. As the
authors of Chapter 11 point out, no prospec-
tive randomized studies have been completed
to demonstrate improved patient outcome by
the use of these new tests and the two studies
currently underway will not report for several
years. They do point out that some forms of
clinical benefit from novel tests may be more
subtle than improvements to survival.

Gene expression profiling has also been
used to examine tumors from patients who
have developed local recurrence and those
who have not (Chapter 4), and a gene set
identified which may predict local recurrence,
although studies of larger series are required.

For gene expression profiling to be widely
applicable the arrays have to be able to use
RNA isolated from fixed, embedded tissue,
since this is what happens to most cancers. 

CONCLUSIONS

The application of prognostic and predictive
factors in the clinical setting has increased,
and will continue to do so with advances in
markers and therapies. The well-tested factors
such as those forming the NPI and ER are still
clearly important, and illustrate that all mark-
ers are only of value if determined repro-
ducibly and accurately. There is great potential
in many of the topics presented in this book,
and the progression from research to the
clinic should come, as shown by what has hap-
pened with gene expression profiling.
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INTRODUCTION

The assessment of prognostic factors, in order
to provide a prediction of outcome, has
become an essential part of the histopatholo-
gist’s role in the handling and histological
reporting of invasive breast carcinomas.1 Only
with this information available can the clinical
team select the most appropriate treatment
for the management of patients; those with an
excellent prognosis can avoid unnecessary
adjuvant treatment,2 and women with a very
poor prognosis can receive more aggressive
therapies. In addition, factors which assist in
the identification of patients who may res -
pond or be resistant to specific therapies, i.e.
predictive factors, can be identified. Such
evaluation of predictive factors is an increas-
ing part of the histopathologist’s function and
practice. Markers may be examined with
techniques such as immunohistochemistry
and fluorescence in situ hybridization, and
include estrogen receptor (ER), progesterone
receptor (PR) and human epidermal growth
factor receptor 2 (HER2) for prediction of
response to hormone agents and tras tuz -
umab, respectively (see Chapters 9 and 13).
Nevertheless, a large variety of robust and
important prognostic features can be assessed
using traditional hematoxylin and eosin
(H&E) light microscopy. In this chapter, fac-
tors are described which have prognostic
implications for breast cancer patients and an
indication of their relative importance is also
described. Table 2.1 indicates some of the
range of assessable prognostic factors.

MORPHOLOGICAL FACTORS

Tumor size

The prognostic importance of tumor size is
well recognized; patients with larger invasive
breast carcinomas have a poorer outcome than
those with smaller lesions.3–6 Many years ago,
Rosen and Groshen4 predicted 20-year relapse-
free survival rates for women with tumors
<10 mm, 11–13 mm, 14–16 mm and 17–22 mm
in diameter of 88%, 73%, 65% and 59%,
respectively. However, the clinical evaluation
of tumor size is inaccurate, clinical–pathologi -
cal agreement is seen in only 54% of cases.7

Radiological assessment, particularly mag-
netic resonance imaging (MRI) and ultra-
sonography, which are both more accurate
than mammographic estimate of tumor size,8

is more precise than the clinical determina-
tion, but breast carcinomas should always be
measured histopathologically. A macroscopic
measurement can be performed for large
lesions in three planes in the fresh state and

The role of the pathologist in assessing
prognostic factors for breast cancer
Sarah E Pinder, Gavin C Harris and Christopher W Elston

2

Table 2.1 Prognostic factors in breast cancer

Traditional morphological factors:

• tumor size
• lymph node stage
• tumor grade
• tumor type
• lymphovascular invasion

Miscellaneous factors
Hormone receptors
Molecular markers 
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THE ROLE OF THE PATHOLOGIST 7

then confirmed after fixation but, for small
and in situ lesions in particular, the maximum
size should be determined microscopically,
e.g. using the Vernier scale on the microscope
stage. 

Smaller tumors are less frequently node-
positive than larger lesions, but there is a risk
of metastatic lymph node disease even for
lesions <10 mm in size; Carter et al9 reported
nodal metastases in approximately 20% of
patients with breast cancers <10 mm. Some
have reported that 12% of breast carcinomas
≤5 mm in diameter are associated with lymph
node metastases,10 whilst others have sug-
gested that nodal metastases are unlikely in
tumors of this size range.11 Because of the
clear prognostic significance of breast cancer
size, it is one of the lynchpins of data collec-
tion for radiology quality assurance (QA) in
mammographic breast screening programs.
Specifically, it is recommended that half of the
invasive carcinomas detected by mammo-
graphic screening in the UK National Health
Service Breast Screening Programme should
be ≤15 mm in size. It is, therefore, essential for
QA of breast screening programs that pathol-
ogists measure tumors as accurately as possi-
ble to the nearest millimeter, and do not
“round up” or “round down” the size of
tumors.

Lymph node stage

The presence or absence of locoregional lymph
node metastases is one of the most important
features in the prediction of disease-free and
overall survival in breast cancer patients. Whilst
lymph node metastasis is, at least in part, a time-
dependent factor, i.e. a carcinoma is more likely
to have lymph node metastases the longer it has
been present, it is also a marker of a more intrin-
sically aggressive phenotype.12,13 The average 10-
year survival is 75% for node-negative patients
compared to 25–30% for those with nodal dis-
ease.14 Five-year survival rates for patients with
node-negative disease have been documented to
range from 98% (<0.5 cm) to 82% (>5.0 cm).9

Prognosis also worsens with increasing numbers

of involved lymph nodes bearing metastatic
deposits;14 patients with four or more positive
lymph nodes (lymph node stage 3 disease) have
a poorer 5-year survival than those with three or
fewer lymph nodes containing metastatic carci-
noma (lymph node stage 2).9,12

The prognostic significance of extranodal
extension of metastatic deposits is somewhat
controversial, but there is reported to be an
increased rate of recurrence when this feature
is seen.15 Some research has shown a worse
overall survival, disease-specific survival and
disease-free survival rates in those patients
with extranodal spread; in particular, multi-
variate analysis of disease-specific survival in
patients with 1–3 involved lymph nodes has
shown independent prognostic significance.16

Other reports have also shown an association
with overall survival but, interestingly, no rela-
tion to local recurrence in the axilla.17

The TNM (tumor size, lymph node stage,
presence of distant metastasis) staging sys-
tem was initially proposed in 1954, and has
been modified several times.18 As noted
above, the clinical assessment of tumor size is
not accurate. Similarly, the clinical determi-
nation of lymph node size does not necessar-
ily reflect the underlying pathology: nodes
reactive to, for example, previous breast
biopsy, may be enlarged without evidence of
metastatic disease, whilst nodes containing
metastatic carcinoma may be impalpable.
Thus, the clinical TNM system is unreliable.
The pathological TNM (pTNM) staging sys-
tem incorporates the histological details of
size and nodal disease, whilst metastasis is
not, in general, assessed histologically and
this component corresponds to the clinical
“M” category.

Some breast units have historically under-
taken routine lymph node clearance,19 whilst
others, especially in the UK, have performed
four-lymph-node sampling. The latter groups
have argued that node sampling provides suffi-
cient and equivalent prognostic data, with less
morbidity in the form of lymphoedema and
reduced shoulder mobility.20,21 There is evidence
that a similar proportion of patients will be
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8 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER

found to have metastatic disease with either sur-
gical procedure.20 However, this argument has,
to a large extent, been superseded by the wide-
spread acceptance and routine application of
the theory and practice of the sentinel lymph
node (SLN) biopsy procedure. This targeted
procedure is based on the principle that injec-
tion of blue dye and/or radioisotope into the
breast tissue can be used to identify the first
lymph node draining to the axilla, and, there-
fore, that if disease has spread that this is the node
that will bear metastatic tumor. There is a small
false-negative rate,22 and any potential long-term
effect on survival is not established. However, as
with four-node sampling, there is significantly
less axillary morbidity with SLN biopsy than axil-
lary dissection/clearance, and the value in
patient management is now established as a stan-
dard of care.

Present UK histopathological practice regard-
ing examination of lymph nodes is based on the
premise that one should maximize the chance of
identifying metastatic disease with simple, cost-
effective techniques.23 Whilst a very large number
of pathology protocols for examination of SLNs
are in use,24 many require significant laboratory
resources. At present, the UK guidelines recom-
mend thin slicing of the node, embedding each
lymph node separately, and histological exami-
nation of one level of the multiple slices of each
lymph node with hematoxylin and eosin (H&E)
stains. Examination of additional levels, immuno -
histochemistry and reverse transcriptave-poly-
merase chain reaction (RT-PCR) are not regar  ded
as routine, nor is intraoperative assessment (e.g.
by touch imprint cytology or frozen section),23

although some groups in the UK and elsewhere
undertake some, or all, of these additional pro ce-
dures. As discussed in Chapter 6, the prognostic
significance of micrometastases and isolated
tumor cells remains uncertain, but it is recom-
mended that these deposits should be reported
as per UICC/TNM and AJCC Guide lines,18,23,25

and categorized as isolated tumor cells, micro -
metastases or macrometastatic tumor. How ever,
it should also be noted that there is some varia-
tion in application of these terms, particularly
regarding the classification of very small deposits
in the parenchyma, and further clarification of
guidelines is awaited.

Three broad groups can be described
according to the number of nodes with
established metastatic deposits in the axilla.
Thus, patients with no metastatic disease are
classified as lymph node stage 1, those with 3
or fewer nodes containing metastatic carci-
noma as nodal stage 2, and those with 4 or
more nodes involved as lymph node stage 3;
this should not be confused with the TNM
staging system.18 In some units, patients with
primary invasive cancer within the inner half
of the breast historically had internal mam-
mary node sampling. If this is performed, and
if this lymph node contains metastatic tumor
without axillary deposits, the stage of disease
is classified as nodal stage 2, but if any axillary
node and the internal mammary node contain
metastatic cancer the disease is categorized as
stage 3. In addition, it is well recognized that
the level within the axilla of the involved
nodes is of prognostic value; those women
with metastatic disease at the apex have a sig-
nificantly poorer outcome26 and are classified
as having stage 3 disease, even if this is appar-
ently the only axillary lymph node which is
identified as bearing metastasis.

Histological grade

In many series, lymph node stage is the most
important factor in predicting survival of
patients with breast cancer but, in some centers,
multivariate analyses have shown that histologi-
cal grade is of similar weight. Indeed, histologi-
cal grading has been repeatedly shown to
predict for overall survival and disease-free sur-
vival (Figure 2.1).27–29

Grading must be performed with precision
and care on tumor samples that are well fixed.
All should ideally be received fresh in the lab-
oratory and incised to obtain optimum fixa-
tion. A significant decrease in mitotic count,
and hence mitotic score, is noted after a delay
in fixation of only 1 hour.30,31 It is vital to note
that formalin penetrates fatty tissue slowly,
and it seems likely that tumors which have not
been incised (and are thus surrounded by sev-
eral centimeters of tissue) may suffer a similar
fate. Thus, histological grade, which incorpo-
rates an assessment of mitotic count, may be
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THE ROLE OF THE PATHOLOGIST 9

artificially low (e.g. grade 3 lesions may incor-
rectly be categorized as histological grade 2) if
the lesion is poorly fixed; this may have signifi -
cant treatment implications. 

Histological grading of breast carcinomas is
performed by a combined evaluation of three
factors: gland/tubule formation; atypia/pleo-
morphism/nuclear size; and mitotic count.
Although still described by some as the Bloom
and Richardson grade32 of an invasive breast can-
cer, the system was amended significantly by the
Nottingham Group,27 and it is this modified system
which is recommended by the UK23 and the
European Breast Screening Pathology Groups,
the US Directors of Anatomic and Surgical
Pathology,33 as well as the UICC18 and WHO.

The assessment of glandular differentiation
requires evaluation of the proportion of the
whole of the tumor which is forming acini with a
definite lumen; those carcinomas which show
<10% tubule formation score 3, those between 10
and 75% score 2, and tumors forming tubules in
>75% score 1 (Figure 2.2). Glandular spaces
within more solid islands of invasive carcinoma,
such as may be encountered within some “no spe-
cial type” (NST) or mucinous tumors, should be
included in this assessment. Nuclear size/
pleomorphism/atypia is scored from 1 to 3 

corresponding to mild, moderate and marked
pleomorphism/nuclear size. The assessment of
pleomorphism should be performed at a high
magnification and involves a comparison with
normal epithelial cells in the same sections. If
there is significant variation in pleomorphism in
different areas of a carcinoma, the highest pleo-
morphism score is recorded. The mitotic count
of the tumor is also scored from 1 to 3; the pre-
cise number of mitoses per 10 high-power fields
depends on the field area of the 40× lens, and
varies significantly between microscopes;23 thus,
appropriate calibration of the microscope is
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Figure 2.1 Overall survival
for patients with primary
operable breast car cinoma
in the Nottingham Tenovus
Primary Breast Carcinomas
Series by histological grade.

Figure 2.2 Hematoxylin and eosin section showing
tubule formation.
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10 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER

essential. Breast carcinomas are notoriously het-
erogeneous, particularly with regard to mitotic
figures, and the area of highest frequency of pro-
liferation/mitoses is selected for assessment. This
is often at the periphery of the tumor.34,35 It must
be noted that only unequivocal mitoses are
included, and apoptotic and hyperchromatic
nuclei should be ignored; only nuclei with defi-
nite features of metaphase, anaphase or
telophase are counted.

The values of the three elements are then
added, and the sum of the scores is used to
classify the breast cancer as histological grade
1 (scores of 3, 4 and 5), grade 2 (scores of 6 or
7) or grade 3 (sum of scores of 8 or 9). With
experience this procedure can be performed
rapidly and is of significant importance for
predicting patient survival; a patient with
a grade 1 tumor will have an 85% chance of
surviving 10 years, but patients with a grade
3 tumor have only a 45% 10-year survival rate
(Figure 2.1).

In the past there has been considerable sus-
picion regarding the reproducibility of histo-
logical grading procedures. However, several
studies have assessed the reproducibility of
histological grading, with up to 80–87% agree-
ment, due to the more objective criteria of the
Nottingham modifications when compared to
the original methodology.36–38

Previously, some pathologists have also ques-
tioned the application of histological grading
to tumor types other than ductal/NST lesions.
Although some tumor types are by definition
of a specified grade (e.g. tubular carcinoma is
of histological grade 1), others, such as lobular
carcinoma, may vary. Whilst typically of histo-
logical grade 2 (scoring 3 for tubules, 2 for
nuclear atypia and 1 for mitoses), occasionally
these lesions may be of histological grade 1 (3,
1, 1) or grade 3 (3, 3, 2), and patients with
these variants have outcomes as for the appro-
priate histological grade.

Histological type

In addition to histological grade, the “differ-
entiation” of a tumor can be determined by
an assessment of the histological type.39

Histological typing provides additional infor-
mation to grade in predicting prognosis but
in multivariate analysis the absolute effect of
this is shown to be small.40 However, histologi-
cal typing does provide further biological
information. Different tumor types may typi-
cally express particular markers; lobular carci-
nomas, for example, frequently show estrogen
receptor (ER) expression and are cathepsin-
D, E-cadherin and vimentin negative.41,42 It is
also well recognized that lobular carcinoma
may show a different pattern of metastatic
spread to other breast carcinomas,43 although
this is also true of histological grade.44 Invasive
micropapillary carcinomas have been shown
to present with a high lymph node stage with
increased frequency and often show definite
vascular invasion.13

Many breast carcinoma types have been
described, the most common being that of
NST, which was previously known as ductal.
However, over 18 different morphological
types can be applied;39 clearly, it is not appro-
priate to describe the diagnostic features of
each here.

In order to improve reproducibility of typ-
ing, stricter criteria for classification have
been described in the UK.23 When no or
<50% of the tumor shows special type char-
acteristics the lesion is regarded as NST
(ductal). When another morphological pat-
tern is also present (between 50% and 90%
of the tumor) the lesion is categorized as of
mixed type. Thus, for example, a tumor may
be classified as mixed NST and mucinous
appearance. This is of importance as tumors
of combined NST and “special type” have a
better prognosis than NST alone, whilst
other mixed types such as lobular with NST
have a significantly poorer prognosis.39 When
a special type component constitutes ≥90%
of the carcinoma, it is regarded as being of
pure special type.

Some tumors of so-called special type are
seen with increased frequency as a result of
mammographic breast screening, for exam-
ple, tubular, invasive cribriform and mucinous
subtypes. These are usually of grade 1 mor-
phology and have a good prognosis. However,
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some special type tumors, such as pure muci-
nous cancers, may, less commonly, be of histo-
logical grade 2 with a correspondingly poorer
outcome. As noted above, lobular carcinoma
may be formed from cells of large and pleo-
morphic appearance (pleomorphic lobular
carcinoma variant). Table 2.2 summarizes
prognostic data according to tumor type.

The histopathological features of tumors
associated with mutations of the BRCA1 and
BRCA2 genes have been described.45,46 Carci -
nomas in patients with BRCA1 mutations are
more likely to exhibit a pushing margin, high
mitotic count and a lymphoid infiltrate on
multivariate analysis, but not necessarily have a
true medullary or atypical medullary morphol-
ogy.46 More recently, there has been consider-
able interest in the immunohisto  chemical
profile of such subtypes; it has been shown that
these carcinomas are one of the subgroup
of ‘basal-type’ cancers and are frequently ER-
negative, PR-negative, HER2-negative, p53-
positive and have a high proliferation
index.47,48 BRCA2-associated breast carcino-
mas, conversely, whilst tending to be of higher
grade than sporadic age-matched controls do
not appear to have a specific immunoprofile,

although some reports suggest that these too
have a low frequency of HER2 expression.48

Lymphovascular invasion

The presence of tumor emboli in vascular
spaces is of prognostic significance in predict-
ing survival of patients with breast carcinoma,
which has been found by some groups to be
independent of other variables.49 It has been
suggested that this feature is as strong a pre-
dictor of outcome as lymph node stage.50

However, one of the main values of the assess-
ment of this feature lies in predicting local
recurrence in women who have had conserva-
tion surgery, and flap recurrence in those who
have had mastectomy.51 Thus, in some cen-
ters, the presence of vascular invasion is rec-
ognized as a risk factor for local recurrence of
invasive carcinoma, and if present in addition
to other features (such as young age and large
tumor size) is regarded as a contraindication
to breast-conserving surgery. More recently,52

it has been shown in a large series of lymph
node-negative patients that the assessment of
lymphovascular invasion is of independent
prognostic significance along with histological
grade and tumor size, and it has been sug-
gested that this feature should be considered
in decisions about adjuvant treatment in this
group of node-negative women. Finally, in
rare cases where no lymph nodes have been
excised and examined, the presence of

Table 2.2 Prognostic groups according to histological
type (adapted from reference 40)

Excellent group: >80% 10-year survival
Tubular
Invasive cribriform
Mucinous
Tubulolobular

Good group: 60–80% 10-year survival
Tubular mixed
Alveolar lobular
Mixed ductal no special type (NST) and special type

Moderate group: 50–60% 10-year survival
Medullary
Atypical medullary
Invasive papillary
Classical lobular

Poor group: <50% 10-year survival
Mixed lobular
Solid lobular
Ductal NST
Mixed ductal NST/lobular

Figure 2.3 Hematoxylin and eosin section showing lym-
phovascular invasion.
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vascular invasion can be used as a surrogate
for lymph node stage.14

It had not previously been possible to distin-
guish accurately blood vessels from lymphatic
spaces, and “lymphovascular invasion” is gen-
erally taken to mean tumor emboli within any
endothelial-lined space at the periphery of the
main mass of the tumor. In order for the diag-
nosis of lymphovascular invasion to be useful,
strict criteria must be used so that artefactual
shrinkage (e.g. around foci of ductal carci-
noma in situ (DCIS)) is not misdiagnosed as
tumor within a vascular space.49 Immuno -
histochemical assessment may prove helpful in
distinguishing those cases that show artefac-
tual shrinkage from true vascular invasion by
the positive immunoreactivity of the endothe-
lial cell lining in the latter with, for example,
CD31 antibody. More recently described lym-
phatic endothelial-specific antibodies have
been applied to seek to distinguish blood ves-
sels from lymphatic channels, and have proven
to be of interest.53 However, the prognostic
value of such immunohistochemical assess-
ment of lymphovascular invasion for patient
survival is not yet clear. 

MISCELLANEOUS AND MOLECULAR
FACTORS

Extensive tumor necrosis appears to be asso ci-
ated with an aggressive clinical course.54

However, where strict criteria have been
applied, and multivariate analysis performed,
an association with tumor size, histological
grade and proliferation, as well as lymph node
status, has been described, but there has been
no independent prognostic value to this fea-
ture.55 There is some evidence that the pres-
ence and relative size of fibrotic areas in
breast carcinoma can be correlated with an
early relapse.56,57 However, whether these mor-
phological features are robust enough to be
included in a routine histopathology dataset
remains controversial. 

Many molecular markers have been
assessed by groups and reported to be poten-
tial prognostic markers in invasive breast car-
cinoma. C-erbB-2/HER2-/neu is an oncogene

and member of the epidermal growth factor
receptor (EG-FR) family.58 Amplification of
the gene is one of the commonest genetic
abnormalities occurring in breast carcinoma,
although in a small proportion of cases (approxi-
mately 5%) overexpression appears to be the
result of increased transcription.58 In terms of
prognostic significance, amplification of this
gene appears to be associated with an aggres-
sive phenotype, i.e. high histological grade,
estrogen and progesterone negativity, and
reduced overall and metastasis-free survival.58,59

The significance of HER2 assessment, and the
need for strict quality assurance methodology,
now largely relates to the development of
targeted monoclonal antibody therapies such
as Herceptin (trastuzumab),60 and this is
discussed in Chapter 13.

Overexpression of EGFR correlates with
estrogen receptor negativity and resistance to
tamoxifen,6 and clinical trials are underway to
assess its therapeutic potential. Although
there are some promising data from results of
trials of the dual HER2 and EGFR tyrosine
kinase inhibitor, lapatinib, in HER2-positive
breast cancer, to date some other EGFR
inhibitors have proven somewhat disappoint-
ing. In particular, there are difficulties with
methodology for selection of those patients
most likely to respond to these new drugs.61

Other molecular markers have been widely
described. For some, changes are common in
invasive breast cancer; p53 is mutated in nearly
one-third of breast carcinomas and an asso cia-
tion with an aggressive clinicopathological pheno-
type has long been recognized (see
Chapter12).6 Evaluation of proliferation mark-
ers MIB1/Ki67 antigen,62,63 proliferating cell
nuclear antigen (PCNA) and S-phase fraction
have shown a correlation with prognosis (see
Chapter 3). Other molecular markers whose
over- or underexpression have been reported
as showing a correlation with prognosis
include, not exclusively, transforming growth
factor alpha, bcl-2, p16INK4a, parathyroid hor-
mone-related protein, metalloproteinases, inte-
grins, E-cadherin, pS2 and cathepsin-D.6,64–70

However, validation of their robustness as inde-
pendent prognostic factors is disputed, and

12 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER
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many have not withstood close scrutiny and
repeat analysis.

But, most recently researchers have begun to
examine invasive breast carcinomas with more
advanced methodologies such as gene expres-
sion profiling and other “omics” techniques (see
Chapter 11). There has been increasing recog-
nition that breast carcinoma is not a single dis-
ease but a biological (as well as morphological)
heterogeneous group of lesions, and using such
approaches molecular methods of subclassifica-
tion have been described. Gene expression pro-
filing utilizing microarray analysis has identified
breast cancer signatures which appear to be
related to prognosis and potentially for treat-
ment. Different molecular subtypes, designated
luminal (either 2 or 3 groups), normal-like,
HER2+/ER−, and basal-like have been proposed.
Interestingly, such groupings have been con-
firmed with more commonly available immuno-
histochemical techniques, and confirmed to
have prognostic value.72 At present, there is
increasing interest in the overlap between the
“basal-type” of invasive breast carcinoma and the
so-called “triple negative” (i.e. ER-negative, PR-
negative and HER2-negative) breast cancers,
partly because of the poor prognosis of these
patients and partly because of the therapeutic
conundrum they present clinically.

However, differences in design of study,
patient groups included, array technology/ dif-
ferent platforms, and methods of analysis make
correlation and interpolation of many of the
omics study’s results difficult.74 Nevertheless,
there are now a large number of studies which
report, albeit differing, prognostic gene signa-
tures. Indeed, clinical trials based on such sig-
natures are planned and underway, although
not without significant logistically and inter-
pretive difficulties, as recognized by the trial
group concerned.74

It is clear that breast cancer is a complex
and heterogeneous disease, clinically and
biologically. Although in the recent past a
myriad of putative prognostic and predic-
tive markers of breast cancer have been
examined, very few have proven useful.
Studies which have found a variable to be of
independent importance have not generally

been replicated by other groups. At present,
the variables which have been shown repeat-
edly, and by different groups, to be of inde-
pendent prognostic significance remain
those routine histological factors which can
be assessed using H&E stains. Such “routine”
variables should not, however, be dismissed
as “simple” biologically. Such histological
features are a complex combination of time
and tumor-dependent factors. For example,
the presence of lymphovascular invasion or
metastatic disease is likely to be a result of
interaction of features involving cell–cell
and cell–matrix adhesion, degradation/
infiltration, cell proliferation, tumor sur-
face markers, and other specific genetic
abnormalities. 

PATIENT MANAGEMENT BASED ON
PROGNOSTIC AND PREDICTIVE
FACTORS

Although lymph node stage is a well-
recognized predictor of outcome, it remains a
relatively poor discriminator; neither a group
of patients with close to 100% survival nor
one with 100% mortality can be identified.
Histological grade alone is similarly insuffi-
ciently robust. Maximal use of the known
prognostic factors can be made when they are
combined in a prognostic index identifying
groups with a very good and a very poor out-
come. With appropriate weighting from the
beta values of multivariate analysis, the
Nottingham Prognostic Index (NPI) has been
formed, and confirmed3 in studies from
Nottingham and other groups,75–78 as provid-
ing robust information for patients with oper-
able primary breast carcinoma. In this index,
the lymph node stage scored from 1 to 3, as
described above, is added to histological
grade (1, 2 or 3) and to 0.2× tumour size (in
centimeters). Cut-off points of 2.4, 3.4, 4.4, 5.4
and 6.4 can be used to stratify the patients
into groups (excellent, good, moderate
I, moderate II, poor and very poor).30 Based
on the NPI score, decisions can be made
regarding likelihood of survival and thus the
appropriateness of adjuvant therapy. Those

THE ROLE OF THE PATHOLOGIST 13

Walker-8050-02:Walker-8050-02.qxp 5/30/2008 7:43 PM Page 13



women with an extremely good predicted sur-
vival (e.g. those in the excellent prognostic
group have a 96% 10-year survival) are
unlikely to suffer further from their disease
whilst in all probability gaining little from
adjuvant systemic therapy. More recently, a
method for predicting more precisely the
likely outcome for an individualized NPI score
for each patient has also been described.80

Following such calculations of the patient’s
NPI score and selection of those patients who
require adjuvant therapy, predictive markers
can be applied in order to personalize treat-
ment as much as possible.

Developments in the detection of predictive
markers in tissue sections means that the
histopathologist is now intimately involved in
their assessment. ER acts as a predictive factor
to determine the likelihood of response to
hormone treatments such as tamoxifen or aro-
matase inhibitors (discussed in Chapter 9).81,82

The nuclear immunoreactivity seen with ER
antibodies can be assessed either in the form of
an assessment of the percentage of immuno -
staining seen, or a combination of the intensity
and percentage reactivity in a histo  chemical
(“H”) score,83 or in a simplified method (the
“Allred” score)23,84 incorporating adding a
score for the proportion of tumor cell nuclei
staining: 0 = no nuclear staining; 1 = <1%
nuclei staining; 2 = 1–10% nuclei staining;
3 = 10–33% nuclei staining; 4 = 33–66% nuclei
staining; 5 = 66–100% nuclei staining to a score
for staining intensity: 0 = no staining; 1 = weak
staining; 2 = moderate staining; 3 = strong
staining. Thus, summation gives a maximum
value of 8.84 A level of score predicts response
to hormone therapy, and a score of 3 or more
is regarded as ER-positive.

It is noteworthy that studies of interlabora-
tory immunohistochemistry for ER have
shown a false-negative rate of between 30 and
60% for tumors expressing a low level of
receptor.85 In particular, it should be remem-
bered that ER is a highly labile protein and
rapid fixation, as well as adequate antigen
retrieval, is vital for accurate assessment of ER
status, as well as for determination of other
histological prognostic factors.23

HER2 (see Chapter 13) is also most fre-
quently assessed in the first instance immuno-
histochemically,86 and this forms the basis for
selection for treatment with the therapeutic
monoclonal antibody trastuzumab (Herceptin),
which is now routinely used in both metastatic
and adjuvant setting for patients with tumors
which are HER2-positive following clinical trials
in the latter group of patients.87 A scoring system
is established for immunohistochemistry of 0,
+1, +2, +3.86 Cases scoring +3 have been shown
to correlate with amplified HER2/neu.88 Cases
scoring +2 are subsequently assessed by fluores-
cent in situ hybridization to check whether there
is genetic amplification. Tumors scoring +1 or 0
are considered negative. 

The features that have been shown to pre-
dict for local recurrence include histological
grade 3 tumors and young age, as well as the
presence of definite lymphovascular inva-
sion.89 The presence of lymphovascular inva-
sion is thus utilized clinically in some units,
although not all. Patients who have features
which are predictive of a high risk of local
recurrence after breast conservation surgery
may be advised to convert to mastectomy. If
they have already have mastectomy they are
advised to have radiotherapy to the skin flaps.

CONCLUSIONS

At present, the histological features of great-
est weight in predicting the behavior of pri-
mary breast carcinomas are lymph node
stage, histological grade and tumor size, and
the presence of lymphovascular invasion.
When combined, with each other and with
clinical data, they can be used as a basis for
selection of the most appropriate treatments,
both surgical and systemic. Additional “pre-
dictive” markers provide invaluable informa-
tion in the choice of the optimum treatment
for patients with breast cancer who require
adjuvant therapy. The assessment of ER status
is essential in avoiding a time delay for
patients who are unlikely to respond to hor-
mone treatments, and patients with tumors
that are HER2 negative will not benefit from
trastuzumab. In summary, the histopathologist
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has a major role to play, not only in the
diagnosis of breast cancer but in forming a
part of the multidisciplinary management
team, and providing vital prognostic and pre-
dictive data to enable the patient to receive
the optimum treatment.
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INTRODUCTION

Breast cancer is the leading cause of death
among solid tumors in women, and the inci-
dence is still increasing in the Western world,
especially among younger women. In the
Netherlands, there are close to 10,000 new
cases every year in a population of 15 million
people. At present, the disease will affect 12%
of all women, and approximately 40% of
patients will die from metastatic disease.
Gain in survival can be expected from early
detection and the use of adjuvant therapy.
Mammographic screening strategies result in
earlier diagnosis of breast cancer, and a 25–
30% decrease in breast cancer mortality in
woman over the age of 50 years.1 However,
mammographic screening is more likely to
detect slower growing and better differenti-
ated tumors (which inherently have a better
prognosis) rather than rapidly growing aggres-
sive tumors which often present as interval
cancers.2,3 Adjuvant chemo- and hormonal
therapy have been shown to improve survival
in breast cancer patients, but do have side-
effects, and therefore selection of those patients
who will gain the most benefit is critical. In
addition to traditional prognostic factors (see
Chapter 2) and predictive factors (such as
steroid receptors (Chapter 9) and human epi-
dermal growth factor receptor 2 (HER2)/neu
(Chapter 13), other factors are required.
There is a panoply of prognostic factors for
breast cancer. Many of them are directly (e.g.
cell cycle regulators4) or indirectly (e.g.

through growth factors5,6 or angiogenesis7)
related to proliferation or apoptosis. This is no
surprise, since growth of tumor cells is the net
effect of an increase in cells due to prolifera-
tion and decrease in cell death due to apopto-
sis (and necrosis).

Although many studies evaluating the role of
individual genes regulating these processes have
greatly increased our knowledge of the complex
processes of proliferation and apoptosis, the
functional end-results of these – a cell dividing
or going into apoptosis – have remained the
most important prognostic factors.

The aim of this chapter is to review the
prognostic value of proliferation and apopto-
sis for invasive breast cancer, primarily focus-
ing on the clinical value of different methods
to assess proliferation and cell death, and
briefly evaluating the value of genes regulat-
ing proliferation and cell death.

PROLIFERATION

Assessment of proliferation

Different methods, based on the concept
of the cell cycle, have become available for
assessment of the rate of proliferation, and
have been extensively reviewed.8 Cellular pro-
liferation takes place through a defined
process in which several phases can be recog-
nized. From the resting (G0) phase, they join
the active cycling population after appropri-
ate stimuli, and enter the first gap (G1) phase.
Both phases have a highly variable duration.

Prognostic value of proliferation
and apoptosis in breast cancer
Paul J van Diest, Johannes S de Jong, Jan PA Baak,
Rob JAM Michalides and Elsken van der Wall
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In G1, the cell prepares for the synthesis (S)
phase, in which DNA synthesis and doubling
of the genome take place. The S phase is fol-
lowed by a period of apparent inactivity
known as the second gap (G2) phase, in
which the cell prepares for further separation
of chromatids during the mitotic (M) phase.
After the M phase, each daughter cell may
enter the G0 phase or move on to the G1
phase to repeat the cell cycle. The interphase,
which comprises G1, S and G2 phases, forms
the largest part of the cell cycle, but cells in
these phases cannot be distinguished mor-
phologically. Cells in the mitotic phase can,
however, be easily identified because of the
typical appearance of the chromosome sets
during the different subphases of the M phase
(Figure 3.1). This has been the basis for light
microscopic counting of mitotic figures, the
oldest form of assessing proliferation.

However, the duration of the mitotic phase
can vary, especially in aneuploid tumors, so the
number of mitoses is not linearly correlated to
the rate of proliferation. Cell biologists, in par-
ticular, have therefore explored other meth-
ods. An optimal assessment of the
proliferation rate of a tumor includes mea-
surements of the growth fraction, as well as of
the cell cycle time.8 Cell cycle time is difficult
to assess, but preliminary results have been
described by assessment of argyrophylic
nuclear organizer regions (AgNORs) in Ki67-
positive cells, and these show promise.9

Growth fraction can be more easily deter-
mined by immunohistochemical analysis of
proliferation-associated antigens, such as Ki67,
Ki-S1 topoisomerase IIα, proliferating cell
nuclear antigen (PCNA), minichromosome
maintenance protein 2 or phosphohistone H3,
or DNA cytometric assessment of the percent-
age of S phase. Incorporation techniques (e.g.
with bromodeoxyuridine (BrdU) and tritiated
thymidine) theoretically provide the gold stan-
dard of cellular proliferation. All of these
methods have their pros and cons from a cell
biological or practical point of view.8 The bot-
tom line is that incorporation techniques are
impractical, since fresh material is needed,

patients need to be injected intravenously
and/or radioactivity is involved, and are there-
fore unattractive in daily practice. The per-
centage S phase is hampered by marked
intratumor heterogeneity.10 Mini chromosome
maintenance protein 2 and phosphohistone
H3 are promising new proliferation markers.
Mitosis counting and the Ki67 index therefore
remain as practical and well-established meth-
ods. Mitosis counting has been well studied
from a methodological point of view, and by
large retrospective and prospective studies
(see below).

Prognostic value of proliferation in
breast cancer

The different methods for assessing prolifera-
tion have all been tested for their prognostic
value in invasive breast cancer. Most studies
have been performed on sporadic patients,
and a few on BRCA1/2-related cases, which in
general show higher proliferation compatible
with their poorer prognosis.11

A high thymidine labeling index has been
shown to be associated with poor prognosis in
lymph node-positive and -negative breast can-
cer patients,12–28 although not in all studies.29

For BrdU, only a few clinical studies have been
published. Thor et al30 compared BrdU with
the mitotic index and the Ki67 index, and
found comparable prognostic values for all
three techniques. Goodson et al31 found BrdU

Figure 3.1 Mitotic figure as seen in hematoxylin and
eosin (H&E)-stained section.
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to be slightly superior to Ki67. As stated above,
these methods are, however, impractical for
daily routine. For flow cytometry, most studies
that used fresh/frozen material from a suffi-
cient number of patients found a relationship
between high percentage S phase and an unfav -
orable prognosis.32–34 However, in view of the
high intratumor heterogeneity of percentage
S phase, it is difficult to use this as a marker
for an individual patient.32

The monoclonal antibody Ki-S1 is believed
to recognize a cell cycle-associated antigen,
related to mitotic count,35 but only a few clin-
ical studies have been described, most reveal-
ing no prognostic value.35–37

Topoisomerase IIα is a recently established
marker of proliferating cells. In one study,
topoisomerase IIα and Ki67 scores closely par-
alleled each other,38 indicating that the topo -
isomerase IIα labeling index also reflects the
proliferative activity of tumor cells, and pro-
vided independent prognostic value in two
studies.38,39 Minichromosome maintenance
protein 2 and phosphohistone H3 are promis-
ing markers, but as yet, only anecdotal data
have been published.40,41

The Ki67 labeling index on frozen sections
was prognostically relevant in several studies of
invasive breast cancer.42–44 The paraffin-reactive
MIB1 antibody against Ki67 has confirmed the
prognostic value of Ki67 on archival mater-
ial,27,28,38,39,42,45–60 including lymph node-negative
patients,61,62 with a good correlation between
Ki67 and MIB1 staining.44 In predominantly in
situ cancers, even the Ki67 labeling index of
the in situ parts seems to have prognostic
value.50 A marked decrease in the Ki67/MIB1
labeling index during or after treatment is asso-
ciated with a good response to preoperative
chemotherapy63,64 and hormonal therapy.65

However, not all studies on Ki67/MIB1 reached
statistical significance.34 It should be noted,
though, that few studies have addressed metho -
dological issues such as sampling strategies,
intratumor heterogeneity, and reproducibility;
most studies are retrospective, and thresholds
vary.

Due to conflicting results, PCNA immuno-
histochemistry does not seem to provide a

prognostically relevant assessment of prolifer-
ation in breast cancer.66–71 Several studies have
shown that mitotic count is the most impor-
tant constituent of histological grade,72,73 but
there are well-known problems with repro-
ducibility of grading due to lack of strict
protocols.74–80 In different studies from our
group, we have shown that a highly protocol-
driven way of assessing the mitotic activity
index (MAI; counting at 400× magnification
in an area of 1.6 mm2 in the highest prolifera-
tive invasive area in the periphery of the
tumor) results in it being a very strong prog-
nostic factor, giving additional prognostic
value to tumor size and lymph node status in
several retrospective and prospective stud-
ies.7,81–98 Several other groups from different
countries have confirmed the prognostic
value of mitosis counting in primary invasive
breast cancer.1,27,45,57,61,99–138 Elkhuizen et al131

found that patients with a recurrence that had
a high mitotic count following breast-conserv-
ing therapy after an interval >2 years had an
equally poor prognosis to those patients with
a local recurrence detected after a short inter-
val. We have ourselves reported that mitosis
counting in lymph node metastases offers
some prognostic value.88

Table 3.1 provides an overview of the differ-
ent studies on the MAI in breast cancer. The
total number of patients investigated in these
different studies is difficult to estimate, since
not all of them used independent patient
groups, but it is clear that the MAI has been
studied in thousands of patients, and is usually
of strong independent prognostic value.
However, a few smaller studies have failed
to reveal prognostic value.108,114,133 In several
studies, mitotic count has been shown to have
specific additional prognostic value to tumor
size and lymph node status – a combina-
tion denoted the morphometric prognostic
index.82,87,98,129,134

For practical reasons, it would appear that
the MAI by itself is preferable for clinical prac-
tice. The MAI has been proven to be repro-
ducible in a multicenter study involving
routine laboratories.139 The prognostic value
of the MAI holds for premenopausal lymph
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Table 3.1 Overview of the different studies on the prognostic value of the mitoses counting in invasive breast cancer

p value

Disease-free Overall Independent
Authors and ref* n Subgroup survival survival value?

Aaltomaa et al100 293 LN− 0.005 – yes
Aaltomaa et al100 224 LN+ 0.004 – yes
Aaltomaa et al101 106 all <0.001 <0.001 yes
Aaltomaa et al99 281 LN− 0.0115 0.0007 yes
Aaltomaa et al103 688 all <0.0001 <0.0001 yes
Aaltomaa et al104 611 all <0.001 <0.001 yes
Baak et al82 271 ductal – <0.001 yes
Baak et al83 82 ductal – 0.0254 yes
Baak et al85 576 LN−, <55 years <0.0001 <0.0001 yes

Baak et al138 84 <1 cm 0.02 0.001 yes
300 1–2 cm <0.00001 <0.00001 yes
124 2–3 0.0004 0.0008 yes

Barbareschi et al106 178 LN− 0.03 – no
Biesterfeld et al107 104 all – <0.0001 yes
Biesterfeld and 108 LN+ – 0.0093 yes
Reitmaier45

Bos et al86 153 all 0.046 0.017 yes
Chen et al108 255 LN− n.s. n.s. no
Clahsen et al61 441 LN− <0.01 – –
Clayton109 378 LN− – <0.0001 yes
Clayton and 399 LN+ – <0.0001 yes
Hopkins110

Collan et al87 120 all – 0.001 yes
Colpaert et al111 104 LN− <0.0001 – no
Eskelinen et al112 216 all 0.01 – yes
Fiets et al133 164 LN –
Groenendijk et al134 387 all <0.0001 – –
Jannink et al92 186 all – <0.001 yes
Jannink et al92 189 all – <0.001 yes
Jalava et al60 265 all – 0.0002 yes
Joensuu and 311 all – <0.0001 –
Toikkanen113

De Jong et al230 112 all – 0.0009 yes
Kato et al114 70 LN− – n.s. no
Keshgegian 126 all 0.0003 – –
and Cnaan115

Kronqvist et al116 364 all – – –
Kronqvist et al117 202 all – 0.0001 yes
Ladekarl and 
Jensen118 71 ductal – 0.1 yes
Ladekarl119 98 LN− – 0.0005 yes
Laroye and 76 all – n.s. yes
Minkin132

Le Doussal et al135 1262 ductal <0.0001 0.002 yes
Linden et al94 195 all 0.001 – yes
Linden et al95 156 all 0.001 0.005 yes
Lipponen et al120 111 all 0.001 0.001 yes
Lipponen et al136 363 all 0.004 0.001 yes
Lipponen et al121 202 all 0.012 – yes
Liu et al122 791 all <0.0001 <0.0001 yes
Mandard et al123 281 LN−, <0.001 <0.001 yes

premenopausal
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node-negative patients,89,92 which was con-
firmed in a nationwide prospective study in
the Netherlands85,140,141 (Figure 3.2).85,139,140

The College of American Pathologists
Consensus Statement 1999 includes mitotic fig-
ure counting as a category I prognostic factor
for breast cancer,142 and mitotic count has also
been recognized by the UICC as an ‘essential
prognostic factor’.143 The MAI is not seriously
affected by fixation delay, although poor fixa-
tion does lead to poorer morphology, which
makes counting more difficult. It is therefore
advisable to avoid delay in fixation whenever
possible, and to keep fresh specimens in the
refrigerator until fixation.32 Mitosis should, in
principle, be counted before chemotherapy,
but even after chemotherapy, the mitotic 
index has prognostic value.144,145 Counting
should be done on excision specimens or mas-
tectomies to avoid sampling error, but even
counting of large core biopsies seem to be
fairly representative.146

The advantage of a section-based morpho-
logical method to assess proliferation, such as
mitosis counting, is that intratumor hetero-
geneity (e.g. central and peripheral tumor
parts) is relatively easy to deal with.147 The

MAI has been criticized for not correcting for
cellularity, but correction for volume percent-
age epithelium or cellularity does not lead
to a relevant increase in prognostic value,
although it does dramatically increase the
time required for a proper assessment.92

Prediction of response to neoadjuvant therapy

High proliferation has also been associated
with resistance to neoadjuvant therapy when
measured by mitotic rate,148,149 S-phase frac-
tion148 and the Ki67 index.149,150 Cyclin A does
not seem to correlate with neoadjuvant
chemotherapy response.151

Summary

From the different methods available to assess
proliferative activity in breast cancer, the MAI
meets the criteria of well-established prospective
prognostic value, stable thresholds, good repro-
ducibility and practicality. It can therefore be
used to stratify patients for adjuvant therapy. The
Ki67 labeling index assessed with the MIB1 anti-
body is a good runner-up, and may become clini -
cally applicable after further methodological

Table 3.1 (Continued)

p value

Disease-free Overall Independent 
Authors and ref* n Subgroup survival survival value?

Meyer et al28 631 LN− 0.0093 –
Offersen137 365 all <0.0001 no+

Page et al124 311 LN− n.s. 0.01 yes
Pietilainen et al57 191 all – 0.0025 yes
Russo et al68 646 all <0.0001 – yes
Simpson et al126 560 LN+ 0.004 – yes
Theissig et al127 92 all – <0.0001 yes
Thor et al30 486 all 0.0001 0.007 yes
Toikkanen et al128 217 lobular – 0.0001 yes
Tosi et al129 350 all 0.025 – yes
Uyterlinde et al96 63 ductal – 0.008 yes
Uyterlinde et al97 225 ductal – <0.0001 yes
Uyterlinde et al98 295 ductal – <0.0001 yes
Van Diest and Baak88 211 <55 – <0.0001 yes
Van Diest et al90 20 LN+ – 0.004 –
Van Diest et al91 148 all – 0.0001 yes
Younes et al130 300 ductal – 0.0032 yes

* Note: Not all these studies use independent patient groups.
+ Multivariate analysis included, also grade at which it includes the mitotic activity index.
n.s., not significant.
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fine-tuning. The other methods are of biological
rather than practical value.

Prognostic value of cell cycle-regulating
genes

The prognostic value of expression patterns
of cell cycle-regulating genes has been less
well studied than, for example, MAI and
MIB1. Some interesting data regarding cell
cycle regulators have, however, been described
which help us to understand changes in rate
of proliferation in tumors, and some changes
in expression seem to have some clinical
value.

Cyclin A is expressed in the late phases of the
cell cycle, and may thereby function as a marker
of proliferating cells. The cyclin A labeling
index (not influenced by amplification152) is
indeed positively correlated with proliferation.59

In a few breast cancer studies, a high cyclin
A labeling index was associated with poor
prognosis.59,151,153

Cyclin B is also expressed in the late phases
of the cell cycle, and has been found to
increase in frequency from normal breast tis-
sue to atypical ductal hyperplasia (ADH), duc-
tal carcinoma in situ (DCIS), and invasive
carcinoma.154 In one study, high cyclin B levels
predicted poor prognosis.155

Cyclin D1, mainly expressed in the G1 phase,
seems to play a role in breast carcinogenesis,
since mRNA and protein overexpression is
quite often found in ductal hyperplasia and in

situ carcinoma,156,157 especially in high-grade
DCIS, which recur more frequently than low-
grade ones.158,159 Overexpression of cyclin D1
protein or mRNA occurs in the vast majority of
invasive lobular carcinomas, but not in lobular
carcinoma in situ.160

Overexpression of cyclin D1 in invasive breast
cancers occurs in 40–50% of all cases,91,161,162

about half of which is due to amplification of the
cyclin D1 gene (CCND1) on chromosome
11q13. This amplification, and corresponding
overexpression, is associated with a more aggres-
sive tumor phenotype and/or worse progno-
sis.152,163–164 In contrast, overexpression of the
cyclin D1 protein was negatively correlated with
proliferation, and by itself was not indicative of
prognosis in large series of patients with stage
I/II breast cancer,91,162,167–169 whereas mRNA
studies gave contradictory results.170,171

This apparent contradiction between the
clinical impact of gene amplification and pro-
tein overexpression may be explained by the
finding that approximately only half of the
cases with overexpression of the cyclin D1 pro-
tein have amplification of the CCND1 gene.
Since overexpression of the cyclin D1 protein
is significantly linked with estrogen receptor
(ER) positivity,91,162,167,172 and since cyclin D1 is
turned on by activated ER, the other half of
the cases with overexpression of the cyclin D1
protein in breast cancer may be due to ‘nor-
mal’ stimulation by estradiol. The strong asso-
ciation between cyclin D1 and ER may explain
why cyclin D1-positive patients respond better
to adjuvant therapy.173 The ability of cyclin
D1 to upregulate p21WAF1 may explain the nega -
tive correlation between cyclin D1 and
proliferation.174

For cyclin E, also mainly expressed in the G1
phase, overexpression is correlated with a
more aggressive phenotype, including high
proliferation175,176 and reduced survival.177–182

Overexpression of p21WAF1 (also known as
p21CIF1), a cyclin-dependent kinase (CDK)
inhibitor, was correlated with reduced disease-
free survival in several studies,105,106,183–185 but
not in all.168 In the study of Domagala et al,186

no direct association was found between p21WAF1

expression and overall survival. However, a
significantly poorer survival was noted for
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Figure 3.2 Survival of lymph node-negative breast can-
cer patients with low and high mitotic activity index
(MAI) prospective results from the Dutch MMCP study.85
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p21WAF1-negative/p53-positive patients treated
with adjuvant chemotherapy. Similar results
were obtained by Caffo et al183 and Thor
et al.185 These data indicate that the p21WAF1/p53
phenotype may predict therapeutic response
to chemo- and hormonal therapy. This may
relate to underlying mutations in p53 result-
ing in failure to induce p21WAF1 and apoptosis.
Also, the subcellular localization of p21WAF1

may be important. Although p21WAF1 should
have its major function in the nucleus, p21WAF1

cytoplasmic staining is often found, and seems
to be associated with high p53 levels and poor
prognosis.155 These results are rather confus-
ing, since p21WAF1 is basically a cell cycle
inhibitor.

Lack or loss of p27Kip1, another CDK
inhibitor, is usually associated with higher pro-
liferation, and indicates poor prognosis in
breast cancer in most studies,54,176,178–180,187 espe-
cially when p27Kip1 is lost in combination with
overexpression of cyclin E.180 Not all studies
have confirmed the adverse prognostic effect of
loss of p27Kip1,54,168 and in one study188 high
p27Kip1 expression interestingly was an indicator
of poor prognosis in node-negative cases. Loss
of p16INK4A (CDKN2A) seems to have no impact
in breast cancer: varying frequencies of p16INK4A

loss have been described,189,190 without prognos-
tic impact.191 Retinoblastoma protein (pRb)
expression does not seem to be of prognostic
significance either.191–193

There have been very many studies of p53 in
breast cancer, as described in Chapter 12.
Although there are many conflicting results,194,195

the majority of studies show that p53 accumula-
tion,185,196,197 or mutation,164 is correlated with
increased proliferation,198 and is associated with
poor prognosis38,49 and poor clinical response to
primary chemotherapy.199 CDK4 protein overex-
pression, as well as CDK4 gene amplification,
have also been found in invasive breast carcino-
mas, but do not correlate with prognosis.169

Although the catalytic form of telomerase
(hTERT) is not strictly a cell cycle-regulating pro-
tein, hTERT levels are correlated with prolifera-
tive activity of breast cancer.200–203 However,
evaluation of its prognostic significance has
yielded conflicting results.200–202,204,205

Summary

Different cell cycle regulators are implicated
in increased proliferation, but the impact of
single regulators is difficult to appreciate,
since they are parts of complex pathways where
other regulators may take over their functions
or modulate effects. The functional endpoint
of these complex pathways (i.e. cell division or
not) is therefore more straightforward to
interpret, and more easily used in practice
than changes in expression or function of
individual regulators.

APOPTOSIS

Assessment of apoptosis

The duration of the process of apoptotic cell
death is estimated to be 12–24 hours.206

Visible changes in cell morphology, which
allow morphological identification, are pre-
sent in the late apoptotic phase and last for
30 minutes to several hours. This is much
longer than the rapid completion of mito-
sis.207 Light microscopy has proven to be a
powerful way to identify apoptotic cells.208

Several other techniques have been devel-
oped to assess the number of apoptotic cells,
some identifying apoptosis in an earlier
phase. The most widely used methods are
agarose gel electrophoresis, in situ labeling
techniques and flow cytometry.

Light microscopy

Identification of apoptotic cells by light
microscopy has been used in various can-
cers.209 The identification has been described
as subjective but, after a short learning
period, it can be done reproducibly when
strict protocols are used.208 The apoptotic
cells can be recognized in standard hema-
toxylin and eosin (H&E)-stained slides based
on the specific morphological features that
take place in the degradation phase. The
process usually involves single cells. The
apoptotic cell shrinks and separates from its
neighbors, and is surrounded by a halo-like
clear space. Retracted, often pink to orange,
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cytoplasm is seen. The nuclear chromatin
breaks up into irregular crescentic, beaded or
nodular masses. Later in the process, small
basophilic apoptotic bodies may be identified
(Figure 3.3). Phagocytosis of apoptotic bod-
ies occurs without release of proteolytic
enzymes or generation of reactive oxygen
metabolites, and therefore there is no acute
inflammatory reaction.208

Counting apoptotic cells in H&E sections
has the advantage that no additional staining
or preparation is required, and the material is
not lost after the measurement as with flow
cytometry. Intratumor heterogeneity can be
assessed. Large retrospective groups of
patients can easily be evaluated, and other cell
biological aspects of the tumor, such as prolif-
eration (mitosis counting) and angiogenesis,
can be determined in the same tumor section.
Furthermore, automated assessments can be
made using image analysis, providing a topo-
graphical relation between apoptosis, prolifer-
ation and angiogenesis.210

The number of apoptotic cells is usually
expressed as the percentage of apoptotic tumor
cells. Some authors, however, denote the num-
ber of apoptotic cells per 1000 tumor cells211 or
per defined area (e.g. 1.6 mm2), as we do.121,208

This saves tedious cell counts, and does not
seem to make much difference. A magnification
of 400× or 630× is appropriate.208

Immunohistochemistry of
apoptosis-related proteins

M30 is a monoclonal antibody that recognizes
a cytokeratin-18 cleavage product212 which
accumulates in apoptotic epithelial cells. M30
immunohistochemistry (or flow cytometry) is
therefore useful to identify apoptotic cells in
epithelial lesions. However, no clinical results
have yet been described for breast cancer.

Different caspase enzymes are involved in
the protein cleavage process during apoptosis.
Caspase-3 activity is about the final step, and
active caspase-3 is therefore the most useful
immunohistochemical target to identify apop-
totic cells. Few clinical studies have been
described for breast cancer. The number of
active caspase-3-positive cells correlates with
morphological apoptosis counts and, not sur-
prisingly, with high grade in one breast cancer
study.213

Agarose gel electrophoresis

Apoptosis can be detected based on the prin-
ciple that, owing to internucleosomal cleav-
age, chromosomal DNA is degraded into
multimers of approximately 180–200 bp.214

On an agarose gel, these fragments migrate
electrophoretically at different speed accord-
ing to their size, producing a characteristic
ladder pattern. Larger 50–300 kbp fragments,
which are the initial DNA fragments formed,
require pulsed-field gel electrophoresis215 or
field-inversion gel electrophoresis216 for their
detection. Gel electrophoresis is widely used,
but is not a morphological technique, which is
a clear disadvantage. Further, it is difficult to
use in a quantitative way.

In situ labeling techniques

In situ labeling techniques combine histo-
chemical and immunohistochemical princi-
ples to label DNA strand breaks of apoptotic
cells in situ, and are applicable to paraffin sec-
tions. In the terminal deoxyribonucleotidyl
transferase (TdT)-mediated deoxyuridine
triphosphate (dUTP)–biotin nick end-labeling
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Figure 3.3 Apoptotic cells as they can be recognized in
hematoxylin and eosin (H&E)-stained sections of a breast
cancer.
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(TUNEL) method, TdT catalyses the addition
of biotinylated dUTP to free 3′-OH ends of
DNA fragments, with the synthesis of a
polydeoxynucleotide polymer. The signal is
amplified by avidin–biotin–peroxidase, and
diaminobenzidine is used as chromogen.217,218

The in situ end-labeling technique uses DNA
polymerase for enzymatically mediated bind-
ing of biotinylated nucleotides to DNA
breaks.219 In situ labeling techniques identify
apoptotic cells, including those with early
nuclear chromatin margination. However,
clearly recognizable apoptotic cells may
remain unstained, whereas cells which lack
the morphological features of apoptosis may
be stained, including necrotic cells.218,220 Also,
the in situ labeling techniques depend greatly
on tissue pretreatment, which usually includes
acid (which may cause strand breaks itself),
the concentration of the terminal transferase
enzyme, and the type and concentration of
the fixative. Comparisons with plain morphol-
ogy by light microscopy do, however, show a
good correlation with DNA end-labeling
methods. Comparison of in situ nick transla-
tion and TUNEL shows that the latter is more
sensitive.218

Altogether, in situ labeling techniques could
be used to highlight apoptotic cells, but have
the disadvantage of producing false-positive
and -negative results when compared with
light-microscopic assessment of the number of
apoptotic cells. When apoptosis is a rare event,
or when there are many apoptotic-like cells
present (e.g. in the case of inflammation),
labeling techniques may then, be useful.

Flow cytometry

In a flow cytometer, apoptotic cells can be
identified by a decrease in forward light scat-
ter, and subsequently in side scatter, because
of cell shrinkage and subsequent decrease in
light reflectiveness. When cells are incubated
with a DNA-binding fluorochrome, apoptotic
cells show reduced fluorescence. Flow cyto -
metry can also be combined with in situ label-
ing techniques, as reviewed by Darzynkiewicz
et al.221 Flow cytometry is of great value for

measuring the rate of apoptosis in cell cultures.
It can also be combined with other apoptosis-
or proliferation-related variables in the same
measurement.

The disadvantages of flow cytometry are the
loss of tumor material after measurement, the
lack of visual control during the measurement,
and the fact that it is less useful for detecting
rare events such as apoptosis in human
tumors. Active caspase-3 and M30 antibodies
can also be used to detect apoptotic cells by
flow cytometry.

Summary

For clinical studies, light-microscopic count-
ing of apoptotic cells seems to be the most
practical method. Immunohistochemistry for
active caspase-3 and M30 are emerging meth-
ods that show promise.

Prognostic value of apoptosis in breast
cancer

Several studies have been published regarding
the clinical value of light-microscopic apoptosis
counting in invasive breast cancer. In the stud-
ies by Vakkala et al,221 Lipponen et al122 and
Zhang et al,223 a high number of apoptotic cells
was associated with a poor prognosis. A high
apoptotic index was also associated with poor
differentiation.122 The number of apoptotic
cells ranged from 0 to 138/mm2. However,
Lipponen et al121 used five consecutive fields,
while Zhang et al222 used five randomly selected
fields. In another larger series of patients, apop-
tosis counts were also significant in univariate
survival analysis, but did not provide indepen-
dent prognostic value.123

Our own study of 172 stage I and II invasive
breast cancers, applying counting of apoptosis
in H&E-stained sections according to a
methodologically sound protocol (see Table
3.2),208 showed the number of apoptotic cells
per mm2 (assessed in 10 high-power fields =
1.59 mm2) to be positively correlated with the
MAI (p = 0.0001) and histological grade
(p < 0.0001). Patients with a high apoptotic
index showed shorter overall survival than
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patients with a low apoptotic index, both in the
total patient group as well as in the lymph
node-positive group (Figure 3.4). Tumor size,
MAI, lymph node status and apoptotic index
were independent prognostic indicators in
multivariate analysis. The apoptotic index was
shown to be of additional prognostic value to
the MAI in the total patient group as well as in
the lymph node-positive group (Figure 3.5).212

The value of the apoptotic index was con-
firmed by others,224,225 but not by all,226 and in
one study a high apoptotic index indicated a
favorable prognosis.227

Three studies have evaluated the prognostic
value of the TUNEL technique for detecting
apoptotic cells. Berardo et al228 found no cor-
relation with disease-free or overall survival in
a series of 979 lymph node-positive breast can-
cer patients when patients were divided
according to low or high rate of apoptosis.
Further subdivision into four separate groups,
based on the percentage of apoptotic cells,
showed a trend towards worse survival as levels
of apoptosis increased. Gonzalez-Campora
et al,229 studying 65 patients, did find the num-
ber of apoptotic cells to provide independent
prognostic information.

Prognostic value of apoptosis-regulating
genes in breast cancer

The apoptosis-regulating genes bcl-2, bcl-x,
bak and bax are expressed in a subset of
breast carcinomas. bcl-2 has been related to
low rates of apoptotic cells and a favorable
prognosis in invasive breast cancer.195,232–235

The pro-apoptotic Bax protein, however, does
not seem to show a strong relation to the
number of apoptotic cells in invasive breast
cancer,236 and results on prognostic value are
conflicting.232,236

High cytoplasmic expression of the apopto-
sis inhibitor survivin was associated with bcl-2
expression and the apoptotic index, and
seems to indicate poor prognosis in breast
cancer.237–242 p53 is also implicated in apopto-
sis; its value in breast cancer is discussed in
Chapter 12. p53 mutations correlate with
increased apoptotic activity.198

CONCLUSIONS

Proliferation and apoptosis both play important
roles in the clinical behavior of invasive breast
cancer. Proliferation has been most widely

Table 3.2 Univariate survival analysis results from a study evaluating the prognostic value of apoptosis
counting in breast cancer in comparison with other prognostic features 

Variable Grouping n Survival p value Log rank

Tumor size <2.5 cm 80 85 <0.0001 22.3
∃2.5 cm 92 48

Histologic type Ductal, medullary 132 66 n.s. 0.4
Others 40 65

Histologic grade I 73 81 0.0002 16.6
II 61 57
III 38 49

Lymph node status Negative 86 77 0.001 10.7
Positive 86 55

Mitotic activity <10 91 81 <0.0001 18.7
index (MAI) ∃10 81 50

Apoptotic index <10 80 78 0.0007 11.6
∃10 92 55

Modified from De Jong et al.230

n.s., not significant.
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studied, and increased proliferation correlates
strongly with poor prognosis, irrespective of the
methodology used. However, from the different
ways to assess proliferation, mitosis counting has
most convincingly been proved to provide

reproducible and independent prognostic value
in invasive breast cancer. The MAI is therefore
used in clinical practice in several European
countries. The Ki67/MIB1 labeling index is a
promising alternative, but needs further
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Figure 3.4 Survival curves for invasive breast
cancer patients with low and high apoptotic
indices (AI).244

Figure 3.5 Survival curves for inva-
sive breast cancer patients grouped
according to the apoptotic index
(AI) and the mitotic activity index
(MAI).244
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methodological fine-tuning. In general, it must
be admitted that little attention has yet been
paid to the value of these proliferation markers
in predicting response to therapy. The apoptotic
index is a new, promising prognostic factor.
Further larger and prospective clinical studies
are needed to establish its true clinical value.

Although much knowledge has been gained
about genes implicated in the complex regula-
tion processes of proliferation and apoptosis,
analysis of individual genes is as yet clinically
unsatisfactory, and analysis of the functional
end-results of these complex processes – rate
of proliferation and apoptosis – is far more
important. This may, however, change when
sophisticated statistical models become avail-
able to interpret complex microarray expres-
sion patterns.
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INTRODUCTION

During recent decades, the surgical approach
to treat breast cancer has changed. Through -
out most of the 20th century the traditional
surgical approach has been the radical or the
modified radical mastectomy. The radical
mastectomy was introduced by Halsted;1 it
included removal of the breast, including an
ample amount of the overlying skin, the
greater part of the underlying pectoral mus-
cles, all axillary lymph nodes and, in later
years, also the supraclavicular nodes in most
cases. The Halsted mastectomy was readily
accepted due to its good treatment results. In
later years it was found that less mutilating
surgery, with preservation of the pectoral
major muscles or both pectoral muscles (the
modified radical mastectomy) was equally
effective with regard to locoregional control
and survival. From the 1970s onwards, the
modified radical mastectomy became the
standard surgical treatment of early breast
cancer.

Already early in the 20th century, attempts to
treat breast cancer with local excision of the
tumor were reported; after the 1970s, larger
studies of breast-conserving treatment were
started. With the presently used conservative
treatment, the tumor is removed, ideally with a
margin of 1–2 cm normal surrounding tissue. It
was found that when a conservative surgical
approach was used, radiation therapy is manda-
tory to achieve acceptable local control rates.2–5

Six prospective randomized trials,6–11 compar-
ing mastectomy with conservative surgery and

radiation for the treatment of stage I–II breast
cancer, showed no significant difference in
terms of locoregional control with limited
follow-up, but publications of the same trials
with longer follow-up data showed poorer local
control after breast-conserving therapy (BCT)
as compared to mastectomy.12–15 However,
these trials demonstrated no significant differ-
ences in distant metastasis or long-term sur-
vival between the treatment approaches. As a
result of these large trials, the surgical
approach has shifted from mastectomy to
BCT. In June 1990 it was concluded at the
Consensus Development Conference on the
Treatment of Early Breast Cancer, convened by
the National Cancer Institute in the USA, that
BCT is an appropriate method of primary ther-
apy for the majority of women with stage I and
II breast cancer.16

PATIENT FOR BREAST-CONSERVING
THERAPY AND FOR LOCAL
RECURRENCE

In the initial years after the introduction of
BCT, patients were selected mainly on the
basis of small size of tumor and the absence of
multifocal disease, as defined by mammogra-
phy and physical examination. During the
1980s, a number of studies were performed to
define subgroups of patient who were at high
risk for local relapse (LR). It was found that
risk factors for LR after BCT are different
to risk factors for LR after mastectomy. For
instance, tumor size and positive lymph nodes,

Risk factors for local recurrence
following conservation therapy in
breast cancer
Paula HM Elkhuizen, Bas Kreike and Marc J van de Vijver
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well-known risk factors for LR after mastec-
tomy, have not been identified as risk factors
for LR after BCT. The difference in risk factors
for LR after both modalities complicates the
choice between mastectomy and BCT.

Renewed tumor growth in the treated breast
is assumed to arise from microscopic tumor foci
left behind after surgery. In studying mastec-
tomy specimens from 282 patients with invasive
primary breast cancers, Holland et al17 found
additional tumor foci of invasive and noninva-
sive carcinoma in the breast tissue around the
reference mass in nearly two-thirds of the speci-
mens. Of these tumor foci, 43% were located
>2 cm from the reference mass. Also, there was
no difference between primary tumors ≤2 cm
and tumors >2 cm with respect to tumor foci in
number or distance from primary tumors. In
other words, regardless of primary tumor size,
tumor cells are frequently left behind in the
operated breast at a distance of >2 cm of the
dominant tumor. Radiotherapy administered
after local excision is aimed at eradicating these
remaining tumor cells, and is of major impor-
tance.2–5 However, in cases where the remnant
tumor burden is too large for eradication by
radiotherapy, or when the remaining tumor
cells are radioresistant, patients will present with
a LR. For instance, risk factors found for LR
after BCT include positive tumor margins18–27

and lymphangio-invasive growth;18,21,28,29 both
risk factors represent a higher risk for a signifi-
cant tumor burden after conservative surgery.

Treatment-related factors which are associ-
ated with low risk of LR include the use of
more extensive surgery. After quadrantec-
tomy, a lower risk for LR is found compared
to lumpectomy.30 However, extended surgery
reduces the LR rate, but at the cost of com-
promising the cosmetic result. Patients nowa-
days are considered candidates for BCT if an
acceptable cosmetic result can be achieved
and no significant risk for complications is
present (i.e. a history of pre-existing collagen
vascular disease, or previous radiation).

Margins

Margin status of the invasive tumor has been
found in many studies to be of predictive

value for LR after BCT, as summarized in
Figure 4.1.18–27 In practice, the most commonly
used method to assess microscopic margins is
inking of the breast specimen with subsequent
sections taken perpendicular to the inked sur-
face. The distance between the inked margin
and cancer cells can then be assessed. Close
margins have variably been defined as tumor
within 1–2 mm of the margin. The definition
of a negative margin has ranged from no
cancer cells at the margin to a distance of >1–
2 mm. Involvement of the margin may be focal
(i.e. ≤3 low-power fields) or diffuse (>3 low-
power fields).

Gage et al22 showed no difference in the LR
rate in patients with negative margins for
those cases in which there are cancer cells
within 1 mm of the inked margins compared
to cases in which cancer cells are more distant
from the resection margin. Patients with nega -
tive margins (>1 mm) had a 5-year risk of LR
of 2%, and patients with close margins (nega-
tive ≤1 mm) had a similar risk for LR at 5 years
of 3%. The authors showed that patients with
only focally positive tumor margins had a con-
siderable lower risk of LR than those with
more than focally positive margins. The 5-year
risk for LR for patients with focally positive
tumor margins was 9%. Patients with tumor
margins more than focally positive as assessed
in 3 low-power fields, had a 28% risk for LR at
5 years. These data have been updated after
prolonged follow-up showing similar results.25

As seen in Figure 4.1, most series demon-
strate an increased incidence of LR in patients
with positive resection margins, although the
incidence of LR varies among the different stud-
ies. The variations in LR rates may be related to
the extent of the surgical resection, the pres-
ence or absence of ductal carcinoma in situ,
and the extent of the tumor-involved margin.
In general, reexcision should be advised in
cases of a tumor resection with margins that
are more than focally positive. 

Tumor features

Tumor size (T1 versus T2) and tumor location
has not been found to be associated with a
higher risk of local recurrence after BCT.
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There is no increased risk of breast recur-
rence in T2 tumors provided that an excision
with tumor-negative margins has been per-
formed.31,32 Also, location of the tumor (outer
quadrants, subareolar, or central tumors) does
not predict a different risk for LR, as long as
an excision with negative margins can be per-
formed. Histologic type does not appear to be
associated with risk of LR.33 Invasive lobular
carcinomas were found in two series34,35 to be
associated with increased risk for LR; however,
additional series reported no increased
risk.29,31,33,36–40 Patients with lobular histology
are now considered candidates for conserva-
tive surgery and radiation, provided that the
tumor is not multifocal and that adequate exci-
sion can be performed with negative tumor
margins. Data on tumors with medullary, col-
loid, or tubular histology are limited, but
suggest that these patients do not have an
increased risk for LR. Also, patients with
positive axillary nodes do not have an
increased risk for LR when treated with
BCT,29,31,32,41 in contrast to patients treated with
mastectomy.42,43

In 15–30% of patients, the invasive breast
carcinoma is accompanied by an extensive

component of ductal carcinoma in situ
(EDCIS). An important finding has been the
identification of this EDCIS component as a
risk factor for LR after BCT. In a study by
Vicini et al,44 and in a later update by Boyages
et al,45 it was found that patients with an
EDCIS constituted 28% of the patients
with infiltrating ductal carcinoma, and yet
accounted for 60% of all local recurrences.
Other studies have confirmed EDCIS as an
important risk factor for LR after
BCT.19,21,26,29,40,46–48 In Figure 4.2, some of
these data are summarized.19,21,26,45–47 There
have also been studies that did not find EDCIS
as a risk factor for LR.31,32,49,50 This may in part
be the result of lack in reproducibility among
pathologists in defining EDCIS. However,
Vicini et al44 did postulate that margin status
may be of importance; and patients in the
Boston series44,45 underwent only a limited
gross excision of the invasive tumor before
radiotherapy, while no margin assessment for
the EDCIS component was used to guide
treatment.

The increased risk for LR for patients with
EDCIS is a result of the growth pattern of
DCIS. DCIS grows along the ducts in the
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breast without invasion of the underlying
tissue. This growth pattern results in a non-
palpable lesion, which is difficult to remove
with tumor-negative margins. When EDCIS is
found in the pathologic specimen, it is possi-
ble that a significant tumor burden is still pre-
sent in the breast. It has been found that when
accurate margin assessment is done, and
EDCIS is removed with negative margins,
EDCIS loses its predictive value for a local
recurrence.19,22,26,46 For the EDCIS component,
the same rules apply as for the invasive com-
ponent: it should be attempted to achieve
tumor-free margins; when the margins are
more than focally positive for EDCIS, patients
need to undergo re-excision to obtain free
margins.51–55

Age and genetic factors

Of interest, a risk factor for LR after BCT found
in several studies is young age.18,21,29,32,40,41,56–67 In
Figure 4.3, data on LR rates are presented for
patients under and above 35 years of age at the
time of BCT.21,29,31,32,41,60–64,67 Young age is associ-
ated with the presence of other risk factors for
LR,68 but is in most studies also an independent

risk factor for LR. Apparently, an unknown bio-
logical factor is present in (relating to the tum -
ors of) these young patients which results in a
high risk for LR. It is estimated that 5–10% of
women with breast cancer have hereditary
breast cancer with an autosomal Men delian pat-
tern of inheritance. Twenty per cent of the
patients have familial breast cancer, with one or
more first- or second-degree relatives without
an autosomal dominant pattern of inheritance.
The identification of the BRCA1 and BRCA2
genes has directed increasing attention to the
hereditary form of breast cancer and its treat-
ment. Some physicians recommend mastec-
tomy as the preferred surgical treatment for
these women. There is no evidence that women
with a positive family history of breast cancer
have a higher risk of recurrence than those with
a negative family history.19,69–72 Most of the series
have not distinguished between patients with
hereditary and familial breast cancer. Pierce
et al73 studied the LR rate after BCT in women
known to carry a germline BRCA1/2 mutation.
In total, 71 patients with germline mutations
were compared with sporadic controls. No dif-
ference in LR was found; at 5 years LR as a first
event was found in 2% of the cohort with
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BRCA1/2 germline mutations versus 4% of the
sporadic cohort.

Other factors

Tumor-related contraindications to conserva-
tive therapy include diffuse microcalcifications
suspicious for malignancy seen on mammogra-
phy or multiple gross lesions within the breast.
Grossly positive or diffusely positive microscopic
excision margins, which cannot be rendered
negative by re-excision without producing exces-
sive deformity, preclude conservative manage-
ment. The above findings are highly predictive
of a large residual tumor burden within the
breast, which is difficult to control with irradia-
tion and will result in an unacceptable high rate
of LR.74 It is still not possible to select all high-
risk patients, despite the risk factors for LR after
BCT that have been detected so far. To make a
good selection for all patients when offering
BCT, with acceptable LR risk, it is necessary to
find additional risk factors for LR. 

In recent decades, new molecular markers
have been found to be of importance for prog-
nosis in breast cancer patients. These markers,

which are known to play a role in breast cancer
growth, have not been extensively studied as
risk factors for LR. For instance, it is known
that overexpression of the human epidermal
growth factor receptor 2 (HER2) gene (also
known as c-erbB2/neu) is found in 50% of the
cases of ductal carcinoma in situ of the breast,
while overexpression in invasive tumors is only
found in 20%.75,76 Because of the association
of EDCIS with LR risk after BCT, it can be
hypothesized that patients with HER2 overex-
pression may be at risk for LR. Inactivation of
the p53 tumor suppressor gene may also be
associated with increased risk of LR. In experi -
mental models, an intact p53 gene plays a
role in the induction of apoptosis by radiation
therapy.77,78 Tumor cells with p53 mutations
can therefore be hypothesized to be radio -
resistant, which in the case of BCT may result
in higher LR rates.

More recently, microarray gene expression
profiling techniques have been developed.
These high-throughput techniques make it
possible to study the association of the expres-
sion of thousands of genes with LR after BCT.
Using this approach, Kreike et al79 showed, in
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a study of 50 primary tumors, that there is not
a large difference in the overall gene expres-
sion profile between tumors developing LR
and those that do not. Nuyten et al80 used a
preselected set of genes that was constructed
to predict metastasis-free survival in breast
cancer patients. Using this gene set, they
showed that it may possibly also predict LR
based on the gene expression profile of the
primary tumor.80 Studies of large series of well-
characterized breast carcinomas from patients
undergoing BCT will be required to obtain
reliable gene expression profiles associated
with LR. Such predictive gene expression pro-
files are likely to help in understanding
the mechanisms underlying LR after BCT;
and to help in guiding optimal locoregional
treatment in individual patients.

THE INFLUENCE OF
RADIOTHERAPY ON LOCAL
RECURRENCE

As outlined above, radiotherapy given after
surgery is very important to eradicate micro-
scopic tumor left in the breast after lumpec-
tomy, and thus to achieve acceptable LR rates.
Randomized trials2–5,81,82 have demonstrated
that adjuvant radiation therapy following con-
servative surgery reduces the risk of local recur-
rences remarkably compared to surgery
alone.2–5,81,82 In the nonirradiated lumpectomy
cohort in the National Surgical Adjuvant Breast
Program (NSABP)-B06 trial, a local recur-
rence rate of 39% was found, compared to
14% in the irradiated patients at 20 years of
follow-up.2 The local recurrence rates found in
the other studies for the group of nonirradi-
ated patients are similar to these results. A
recent meta-analysis by the Early Breast Cancer
Trialists’ Collaborative Group, studied a group
of 7300 patients that were treated with breast-
conserving surgery in trials of radiotherapy.
They showed a 5-year local recurrence risk of
7% versus 26% (absolute reduction 19%),
and 15-year breast cancer mortality risks of
30.5% versus 35.9% (reduction 5.4%), all in
favor of adjuvant radiotherapy following breast-
conserving surgery.81

Studies have been performed in which
radiotherapy was the only treatment for
breast cancer. Pierquin et al83 used combina-
tions of external megavoltage irradiation
with interstitial implants of radioactive
sources to raise the combined dose in the
primary tumor mass to 90–100 Gy. Doses of
this magnitude provided control of all pri-
mary breast carcinomas <5 cm in diameter.
In a retrospective analysis of 463 breast
tumors with radiotherapy alone, Arriagada
et al84 demonstrated the independent influ-
ence of radiation dose for tumor control of
primary breast cancer of various sizes. For
tumors <4 cm a local control rate at 3 years of
25% was found when doses of 40–50 Gy were
given. At 3 years, local control was obtained
with 70–80 Gy in 81% of the cases, while
doses >80 Gy resulted in local control for all
breast carcinomas. For tumors of a larger
size, the control rates were lower, but still a
dose-effect on tumor control was seen. It
should be noted, that high radiation doses
on the breast will yield high risk for compli-
cations, especially severe fibrosis.65,85

Nowadays, following conservative surgery,
radiation therapy is given to the whole
breast to a total dose of 45–50 Gy in a period
of 5 weeks. This is usually followed by a boost
of 10–20 Gy to the original tumor bed. In
this way, a moderate radiation dose is given,
resulting in minimal adverse effects on the
breast and surrounding tissues. Variations in
the radiotherapy technique are found to
have impact on the LR rate. Prolongations
of the overall treatment time with <8 Gy/
week was found to be associated with high
LR rates.86

Also, during the interval of surgery and
radiotherapy, repopulation of residual tumor
cells may occur. A long delay between surgery
and radiation therapy may therefore increase
the rate of LR. Delay of radiation treatment is
mostly studied in patients who received
chemotherapy given during this interval. Few
studies have been published about the effect
of surgery–radiotherapy interval without
chemotherapy given during this interval, and
although higher LR rates are reported with
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increasing interval,87,88 this has not been
found in all studies.32,89

After radiation to the whole breast, usually
a boost is given to the tumor bed. The treat-
ment volume of the boost is determined by
the diameter of the tumor with a safety mar-
gin of approximately 2–3 cm. Surgical clips
placed in the tumor bed are very useful in
accurately determining the boost localization.
A radiation boost to the tumor bed can be
given in different ways: by photons, electrons
or iridium-192 implants. There is no correla-
tion between the type of boost employed and
the risk of LR.90–93

It has been demonstrated that for patients
with unknown margins of tumor resection,
the addition of a boost appears to decrease
the risk of a breast recurrence.94 For patients
with negative margins, the value of an addi-
tional boost had been a subject of debate,
which was ended with the results of the
EORTC 22881 trial.65 This prospective trial
randomized patients with microscopically neg-
ative margins after tumor excision between a
boost or no boost. In total, 5318 early stage
breast cancer patients were randomized to an
additional boost of 16 Gy or no boost follow-
ing whole breast radiation of 50 Gy. At 10
years follow-up, the cumulative incidence of
local recurrence was 10.2% versus 6.2% for
the no boost and the boost group, respec-
tively, resulting in a reduction of LR with a fac-
tor of 0.59. Also in this study, young age was
the most important risk factor for LR. It was
also shown that patients younger than 40 years
of age show the largest absolute clinical bene-
fit from the additional boost. The LR risk in
this age group was reduced from 23.9% to
13.5% at 10 years. As a result, the number of
salvage mastectomies has been reduced by
41%. The EORTC 22881 trial also random-
ized patients (n = 251) with a microscopically
incomplete excision between a boost dose of
10 Gy versus 26 Gy.95 A higher boost dose of
26 Gy resulted in a nonsignificant trend
towards a lower LR rate. At 10 years, the
cumulative incidence of local recurrence was
17.5 % versus 10.8 %; however, at the cost of
an increased risk of fibrosis.

LOCAL RECURRENCE AFTER
BREAST-CONSERVING THERAPY
IS ASSOCIATED WITH POOR
PROGNOSIS

LR after mastectomy has been known to be
associated with poor prognosis even in the
absence of synchronous distant metastases.96,97

It was considered in the initial period of BCT
that prognosis after LR would be favorable
because of the option of salvage mastectomy.
In 1991, Fisher et al98 first described LR as a
predictor for distant metastasis; this was later
confirmed in other studies.29,99,100 It also
appeared that after BCT a LR was found to be
associated with poor prognosis. Whether LR is
the cause of subsequent distant metastasis and
poor prognosis or just an indicator of aggres-
sive disease could not be resolved in these
studies. Risk factors for distant metastasis after
LR have only been studied in a few, very het-
erogeneous, studies.21,99,101–108 A short interval
between BCT and time of LR, mostly defined
as <2–3 years, is found to be a prognosticator
for poor survival after LR.21,98–100,103–106 How -
ever, in most studies focusing on risk factors
for survival after LR, patients are included
who have distant metastasis diagnosed before
or simultaneously with LR. 

As already stated above, the results of the
recently published Early Breast Cancer Trialists’
Collaborative Group meta-analysis81 postulate
that adequate local treatment reducing local
recurrence rates would, in the hypothetical
absence of any other causes of death, avoid
about one breast cancer death over the next 15
years for every four local recurrences avoided.

THE INFLUENCE OF ADJUVANT
SYSTEMIC THERAPY ON LOCAL
RELAPSE IN BREAST-CONSERVING
THERAPY

Adjuvant chemotherapy has been shown to
have impact on LR. Lumpectomy without radi-
ation has been associated with a significant
risk of breast cancer recurrence also if
chemotherapy is given with 5-year LR rates of
30–40%.7,82 However, when patients are
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treated with BCT including radiotherapy and
adjuvant chemotherapy, a decreased incidence
of LR is reported when compared to conserva-
tive surgery with radiation alone.7,64,109–111 In
the NSABP B-13 trial,109 a total of 760 node-
negative breast cancer patients with estrogen
receptor-negative tumors were randomized
between BCT followed by sequential metho -
trexate and fluorouracil or BCT alone. The
risk for LR at 8 years among node-negative
patients who had tumor-free margins after
BCT was 2.6% for patients treated with adju-
vant chemotherapy versus 13.4% for patients
treated with BCT alone. Similar data were also
found for adjuvant tamoxifen after BCT; in
the NSABP-B-14 trial,112 at 7 years the LR rate
was 2.2% for node-negative patients who were
randomized to receive tamoxifen versus 5.5%
of the patients randomized to receive placebo.
Postmenopausal node-negative patients treated
in the Stockholm Adjuvant Tamoxifen Trial,113

were randomized to receive either adjuvant
tamoxifen or no further treatment. At 8 years
follow-up, patients treated with BCT who
received tamoxifen had an LR as first event of
3% versus 7% in patients who did not receive
tamoxifen.

Thus, the use of adjuvant systemic therapy
seems to potentiate the effects of breast irra-
diation after breast-conserving surgery for
invasive breast cancer. It has also been shown
that different chemotherapy regimes hold dif-
ferent effects on local control. In the NSABP
B-19 protocol,109 node-negative breast cancer
patients treated with BCT were randomized
between sequential methotrexate and fluo-
rouracil versus CMF (cyclophosphamide,
methotrexate, fluorouracil). At 8 years, LR
were detected in 2.6% of the patients treated
with the sequential regimen versus 0.6% of
the patients treated with CMF. 

With the increasing use of chemotherapy
as adjuvant treatment, also for node-negative
patients it is important to note that sequenc-
ing of chemotherapy and radiotherapy may
impact on local control. Options for sequenc-
ing of radiotherapy and chemotherapy
include: the delivery of all chemotherapy
prior to radiotherapy or all radiotherapy

prior to chemotherapy (sequential regimens);
the simultaneous initiation of both modalities
(concurrent regimens); or the initiation of
radiotherapy in the midst of the chemotherapy
program (sandwich regimens). Concurrent
regimens have the theoretical advantage of
initiating both modality treatments (for local
and systemic therapy) without a delay in
either modality, and is thereby likely not
associated with increased risk for LR. How -
ever, concurrent regimens may be associated
with increased risk of toxicity. Con current
chemo therapy is not associated with an
increased risk of symptomatic pneumonitis
in patients treated with tangential fields
only. However, in one study treatment to the
breast and regional nodes with concurrent
chemotherapy, an incidence of 9% of symp-
tomatic pneumonitis was found compared to
1% in patients who were treated with a
sequential regimen.114 The concurrent use of
chemo therapy has been associated with a less
favorable cosmetic result in some series, but
not in others.85,115

When using a sequential regimen there
have been reports, mainly from nonrandom-
ized studies, that delay of radiotherapy in
favor of chemotherapy results in higher
LR.116–118 There has been one randomized
trial,119 unfortunately including only a rela-
tively small number of patients, for which the
initial analysis showed a 14% risk of local
recurrence in the chemotherapy-first group
versus 5% in the radiotherapy-first group at 5
years follow-up. However, systemic recurrence
was more frequent when radiation therapy
was given first. In subgroup analysis of this
study, it was found that for patients with nega-
tive tumor margins no difference was found 
in local or distant recurrence rate whether
they were treated with chemotherapy or
radio therapy first. Patients with close, positive
or unknown tumor margins had higher
incidence of LR in the chemotherapy-first
regimen and the higher incidence of distant
recurrences in the radiotherapy-first group
persisted. An update of this study after a
longer follow-up period failed to show any
difference in disease outcome between the
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chemotherapy-first group and the radio ther-
apy-first group.120 Additional clinical trials of
sufficient size are clearly required in this very
important area.

BREAST-CONSERVING THERAPY
AFTER PREOPERATIVE
CHEMOTHERAPY

Chemotherapy can also be administered in the
preoperative setting (also known as neoadju-
vant, primary or induction chemotherapy).
There are several theoretical arguments for
the use of preoperative chemotherapy. These
include the ability to carry out in vivo assess-
ment of tumor response, using the primary
tumor to monitor and optimize treatment
effects on micrometastases. Also, there is a theo -
retical advantage of decreasing drug resis-
tance by early exposure to systemic therapy
with the hope of improving disease-free and
overall survival, as well as producing less favor-
able growth kinetics for micrometastases.
Patients with a good response to neoadjuvant
chemotherapy can become eligible for BCT
even when their initial tumor was too large for
this treatment.

In the NSABP-B27 study, 87% of patients had
a clinical response and 26.1% had a pathologi-
cal complete remission after a combination of
AC and docetaxel neoadjuvant chemother-
apy.121 In the meta-analysis of neoadjuvant ver-
sus postsurgery adjuvant therapy clinical trials,
there was a significant reduction in the number
of mastectomies after neoadjuvant chemother-
apy (16.6% absolute reduction; 95% confi-
dence internal, (CI) 15.1–18.1%).122 An as yet
unanswered question is to what extent the
choice for BCT in these patients that were
treated after neoadjuvant chemotherapy has
resulted in an increase in local recurrence
rates. In four randomized controlled trials123–

126 long-term follow-up showed no difference in
survival between the two treatment regimens,
nor any significant difference in local tumor
control. In the NSABP-18 trial,125 for patients
who underwent BCT, at 9 years an LR rate of
10.7% was found for the neoadjuvant chemo -
therapy group versus 7.6% in the adjuvant

chemotherapy group. Because of the hetero-
geneity of the designs of these studies, firm
conclusions cannot be drawn. In the meta-
analysis122 there was a 22% increase in the risk
of local regional recurrence after neoadjuvant
chemotherapy (relative risk (RR) 1.22; CI 1.04–
1.43).122 The risk of local recurrence was high-
est in studies where patients with a clinical
complete remission,124 or even with macro-
scopical remaining tumor, were treated with
radiotherapy alone without surgery.123,127,128

The relative risk increase of local recurrence in
these three studies was 1.53 (CI 1.17–2.00). In
the other studies combined, there was no
increase in the risk of local recurrence (RR 1.10;
CI 0.87–1.38). These results suggest that even
after a complete remission, surgery remains an
important component of BCT.

On the basis of a study in 340 patients after
neoadjuvant chemotherapy, who all underwent
BCT, investigators at the MD Anderson Cancer
Center have developed a prognostic index.129

Risk factors in this study were: clinical (c)N2 or
cN3 nodal status; residual pathological tumor
size >2 cm; lymphangio invasion; multifocal
growth pattern of the remaining tumor. If two
of these risk factors are present, the risk of local
recurrence was considered too high for BCT
(12% with two risk factors; 18% with three risk
factors after 5 years).

This prognostic index based on three risk
factors was validated in a dataset of 815 patients
who underwent BCT after neoadjuvant
chemotherapy.130 In this study, patients with no
risk factors or only one risk factor had very low
local recurrence rates after 10 years; when
more risk factors were present, 10-year local
recurrence rates were as high as 61%. These
findings highlight that good patient selection
for BCT after neoadjuvant chemotherapy is
extremely important.

In summary, mastectomy instead of BCT
after neoadjuvant chemotherapy should be
advised when: there are diffuse malignant
micro calcifications throughout the breast; when
the resection is not radical with more than
focally involved resection margins; if there are
contraindications for radiation therapy; if it is
not possible to localize the tumor area after a
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complete remission (for this reason, leaving
markers in the breast at the position of the
tumor should be considered prior to neoadju-
vant chemotherapy). Mastectomy should also
be considered if two or more of the risk fac-
tors found in the MD Anderson study are pre-
sent: cN2 or cN3 nodal status (before or after
chemotherapy); remaining tumor size >2 cm;
multifocal tumor (which is often observed in
invasive lobular carcinoma); if there is lym-
phangio invasion.

If these guidelines are followed, neoadjuvant
chemotherapy will help to enable selected
patients with large tumors eligible for BCT.
However, it should be kept in mind that the
majority of patients are already eligible for BCT
without neoadjuvant chemotherapy and only
selected patients with large tumors will benefit
in this way. Therefore, converting mastectomy
to BCT is not a very important justification for
the use of neoadjuvant chemotherapy.

CONCLUSIONS

BCT has become the first choice for the local
treatment of primary invasive breast cancer
for many patients. Risk factors for local recur-
rence play an important role in the decision-
making processes on BCT. Based on the LR
risk profile, the following questions need to
be answered for an individual patient:

• Should mastectomy be advised instead of
BCT?

• Should a re-excision be performed?
• Should a boost of radiotherapy be given; at

what dose? What should be the target area?
• To what extent will systemic adjuvant treat-

ment contribute to an acceptable LR risk?

To date, young age and a number of
histopathological factors have been identified
as risk factors for LR, and these factors are used
to guide patient-tailored therapy. However,
there still is much need for improvement and
additional risk factors for LR will be of great
clinical value. A risk of LR >1%/year is con-
sidered too high and may be an indication for
converting BCT to mastectomy. It should,

however, be realized that even with an LR
risk of 30% at 10 years, 70% of patients could
be safely treated with BCT. Therefore, to
identify risk factors that can be used within
high-risk groups is greatly needed. Young
patients, arbitrarily defined as those younger
than 40 or 35 years of age, form one such risk
group. Using the rapidly increasing knowl-
edge on genetic alterations in breast cancer,
and the emergence of high-throughput tech-
niques such as gene expression profiling by
microarray analysis, it should be possible to
identify these greatly needed additional risk
factors.

Optimal BCT should result in low LR rates.
At the same time, every attempt should be
made to obtain an optimal cosmetic result.
Here, there is still need for improvement and
standardization of surgical and radiotherapy
techniques. Risk factors for LR should then be
integrated into the process of optimizing both
cosmesis and local control. BCT has become a
recognized standard of care in the past
decades; the coming years will hopefully pro-
vide us with more powerful tools to optimize
patient-tailored therapy.
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INTRODUCTION

There is a growing understanding of the
importance of interactions between cells, and
between cells and the surrounding stromal
environment. Information may be transmit-
ted to cells through chemokine and cytokine
signaling, growth factor receptor binding
or adhesive interactions. The integration of
such signals controls tissue architecture, cellu-
lar differentiation and tissue-specific gene
expression. In fact, it has been suggested that
through such mechanisms, the microenviron-
ment plays the dominant role in controlling
tissue function, and restoration of appropri-
ate interactions with the surrounding envi-
ronment may revert features of the malignant
phenotype even though genetic abnormalities
persist.

Given the importance of these interac-
tions in modulating cell behavior, it is not
surprising that disruption of these normal
signals can influence how tumors behave.
Breast carcinomas frequently exhibit altered
cell adhesion molecule expression, which
influences how the tumor cells communi-
cate with each other and with the surround-
ing matrix. Furthermore, there are changes
in the composition of the environment, with
altered matrix protein expression, changes
in cellular components of the microenviron-
ment, and extensive remodelling of the
stroma. Such alterations have the capacity to
generate novel signals between tumor cells
and the environment, and this is likely to
profoundly influence how tumors behave.

This chapter will focus on key changes in
cell adhesion molecules and stromal compo-
nents which have been shown to modulate
breast cancer cell function, the potential
for such features to act as predictive factors
for breast cancer behavior, and the growing
opportunity to use such alterations as thera-
peutic targets.

CELL ADHESION MOLECULES IN
BREAST CANCER

Cell–cell adhesion

Epithelial cells mediate intercellular adhesion
primarily through adherens junctions, desmo-
somes, and gap junctions. The molecules
involved in these adhesive complexes – classi-
cal cadherins, desmosomal glycoproteins and
connexins, respectively – have all been shown
to exhibit altered expression in breast cancers.

The classical cadherins include E-cadherin,
P-cadherin and N-cadherin, and of these the
major focus in breast cancer has been E-cad-
herin. E-cadherin mediates homophilic Ca++-
dependent adhesion and, via interactions with
cytoplasmic catenins and the actin cytoskeleton,
it plays an important role in maintaining epithe-
lial morphogenesis.1 There is compelling evi-
dence to indicate that E-cadherin acts as a tumor
suppressor: in vitro studies have indicated an
invasion-suppressor role for E-cadherin,2,3 whilst
loss of heterozygosity (LOH) at this site is fre-
quently detected in breast carcinomas,4 and
hypermethylation of the E-cadherin promoter
region, with reduced expression of the protein,
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is also common in breast cancer.5,6 Numerous
studies have examined the relationship between
downregulated E-cadherin and breast cancer
behavior. In infiltrating ductal carcinoma
(IDC), reduced membrane E-cadherin has
been associated with high tumor grade7–9 and
the presence of lymph node metastases,9,10

though other studies show no relationship with
conventional prognostic indices.11,12 However, a
recent meta-analysis confirmed interstudy het-
erogeneity, but an analysis of 10 retrospective
studies found that reduced or absent E-cad-
herin significantly increased the risk of all-cause
mortality, whilst a nonspecific association was
identified for breast cancer-specific mortality.13

In addition to reflecting differences in study
design, the contradictory findings regarding
the prognostic value of E-cadherin also likely
reflects the complexity of its role in breast can-
cer spread. Thus, it has been suggested that
downregulation of E-cadherin may be a tran-
sient event, with reexpression at a distant site;14

and enhanced E-cadherin expression in nodal
metastasis has been shown to be an indepen-
dent marker of improved survival, whilst no
such relationship was shown with E-cadherin
levels in the primary tumor.15

In contrast to the tumor-suppressor function
of E-cadherin, expression of P-cadherin in inva-
sive breast carcinomas is consistently associated
with features of more aggressive tumors, includ-
ing high tumor grade and estrogen receptor
negativity,16,17 the presence of lymph node
metastasis,18 and reduced disease-free and over-
all survival.17 Recent gene expression array stud-
ies cluster P-cadherin expression with the basal
subtype of breast cancer,19 which is also associ-
ated with poor patient outcome.20 Furthermore,
P-cadherin expression is strongly associated with
BRCA-1-mutated breast carcinomas, and has
been shown to be a predictor of poor prognosis,
particularly in small node-negative tumors.21

Expression of P-cadherin appears to be con-
trolled primarily through methylation;17,22 whilst
the function of P-cadherin is poorly understood,
one study demonstrated a pro-invasive effect of
this cell adhesion molecule.23

Altered expression of other members of the
cadherin family has also been reported in

breast cancer, though little is known of their
functional and prognostic impact. N-cadherin
has been detected in up to 30% of invasive
breast cancers,24 and has been shown to pro-
mote tumor cell invasion25 and enhance tumor
metastasis in animal models.26 However, lim-
ited studies to date suggest expression in pri-
mary breast carcinoma does not relate to
tumor prognosis.24

Desmosomes are another major adhesive
complex in epithelial cells, of which the
desmosomal glycoprotein families of desmo-
collins (DSc) and desmogleins (DSg) are key
components.27,28 DSc and DSg exhibit a tissue-
specific pattern of expression; in the breast
DSc1 and -2 and DSg 1 and -2 proteins are
expressed by all epithelial cells, whilst DSc3
and DSg3 are restricted to myoepithelial cells
in the normal breast.29 In the normal breast,
desmosomal proteins mediate cell adhesion,
induce polarity of mammary epithelium29 and
inhibit cell motility.30 Despite a central role in
maintaining tissue structure, little is under-
stood about changes in desmosomes in
cancer. Downregulation of DSc3 has been
described as a common event in breast can-
cer,31,32 which is frequently associated with
promoter methylation.32 Other desmosomal
components are also downregulated in tumor
compared to normal tissues, including desmo-
plakin and desmoglein 2,33 though the func-
tional importance of such changes remains to
be established.

The connexin family of gap junction pro-
teins are involved in regulation of cell growth,
cell differentiation and tissue development,
and they are widely regarded as having a
tumor-suppressor role.34,35 Connexin 26
(Cx26) and Cx43 are expressed in normal
breast epithelium, and both reduced and
enhanced levels of expression in breast carci-
nomas have been reported.36,37 Experimental
systems have indicated a dominant role for
these proteins in control of breast differentia-
tion, with overexpression of Cx26 and/or
Cx43 leading to the reversion of the malignant
phenotype through regulation of epithelial–
mesenchymal transition and angiogenesis.38

Once again, despite powerful experimental
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evidence, the predictive value of assessing con-
nexin expression in primary breast cancer has
not been fully evaluated. It may not be as
straightforward as anticipated, since there are
suggestions that the functional impact of con-
nexin expression may be context dependant,
and there may be instances where they con-
tribute to, rather than suppress, breast cancer
progression.39

Cell–matrix adhesion

The integrin family of cell adhesion mole-
cules is the major mediator of cellular inter-
action with the extracellular matrix. Integrins
are cell surface receptors composed of non-
covalently linked α and β subunits,40 and at
least 22 heterodimer receptors are now recog-
nized (Figure 5.1). Cell–matrix interactions
mediate many of the processes implicated in
tumorigenesis, including proliferation, differ-
entiation, migration and invasion,41 thus,
changes in expression on breast carcinoma
cells may be expected to have an important
impact on tumor cell behavior.

The integrin receptor profile for normal
breast epithelium includes α2β1, α3β1, α6β1
and α6β4, with low level expression of α5β1
and αvβ3.42,43 Strong expression of many of
these receptors is localized, particularly within

the myoepithelial compartment, and α6β4 is
largely confined to the junction with the base-
ment membrane, consistent with its incorpo-
ration into hemidesmosomes. Evidence for
the role of integrins in modulating tumor cell
behavior comes both from in vitro functional
studies, and tissue studies, though there are
some discrepancies between these approaches.
Thus, in three-dimensional culture models of
breast cancer, blocking β1 integrin leads to
increased apoptosis and decreased prolifera-
tion,44 and induction of normal breast mor-
phogenesis,45 suggesting that β1 integrin
promotes tumorigenesis. However, in appar-
ent contradiction to this, a number of tissue
studies report that reduced levels of β1 integrin
are associated with higher tumor grade and
with axillary lymph node metastases.43,45–47 The
simplest explanation for this discrepancy is
that tissue studies do not measure levels of
activated integrin, which is likely to be impor-
tant. In support of this, activated (but not
nonactivated) αvβ3 integrin has been impli-
cated in promoting tumor metastasis.48 How -
ever, a recent tissue study has found that high
level β1 integrin staining on breast carcino-
mas is an independent predictor of disease-
free and overall survival.49 Whilst this appears
more in keeping with the in vitro findings, it is
difficult to reconcile with earlier studies,
though it is notable that the latter study is
the largest of all those reported, which is
probably a result of successful antigen retri -
eval techniques allowing application to rou -
tinely fixed archival tissues. The possibility
that β1 integrin could be targeted for ther-
apy49–51 means that further large-scale studies
to determine the prognostic role of β1 inte-
grin are imperative. 

Another integrin heterodimer which plays a
complex role in breast cancer is α6β4 integrin.
In the normal breast, α6β4 is largely confined
to the cell–basement membrane interface where
it is incorporated into hemidesmosomes.
Reduced or absent α6β4 has been a consistent
finding in many studies of primary breast can-
cer,46,48,52 though when detected it has been
associated with poor patient prognosis in some
series53 but not in others.54 Methodological

α1
α2
α3
α4
α5

β1

β3

αv

β2

β1

β3

β5

β6

β8

αx

αD

αL

αM

α6

β7

β4
α7
α8
α9

αIIb

β7 αIEAb

Figure 5.1 Integrin heterodiners. Each integrin com-
prises an α and β subchain which combine to form 23
integrins. Note that α4 combines with both β1 and β7,
and α6 combines with β1 and β4.
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differences between these studies may explain
the discrepant findings. And both studies have
limitations: the former is on a small sample
cohort; the latter depends on in situ hybridiza-
tion, which may not reflect the level of protein
expression. Thus, the true prognostic signifi-
cance of α6β4 in breast cancer is not fully estab-
lished, though molecular subtyping using gene
expression arrays has identified α6β4 integrin
as one of the genes associated with the basal
subtype of breast cancer,19 and it may well con-
tribute to the aggressive nature characteristic
of this tumor group.20 Certainly, experimental
data indicate a role for α6β4 integrin in pro-
moting tumor cell growth and invasion,55–57

mediated at least in part through its collabora-
tion with other signalling molecules such as
c-met58 and c-erbB2.59 However, other data sug-
gest an antitumor effect of α6β4 integrin:
Weaver et al60 found that upregulation of α6β4
in breast cancer cells reversed some features of
the malignant phenotype and promoted glan-
dular morphogenesis. Furthermore, upregula-
tion of α6β4 has been shown to restore contact
inhibition of growth61 and reduce breast
cancer cell invasion.62 These apparent contra-
dictions perhaps result from the different func-
tions of α6β4 depending on its cytoskeletal
attachments, as it mediates anchorage through
intermediate filament-associated hemidesmo-
somes but migration in actin-associated adhe-
sive structures.63,64 Furthermore, the effect of
α6β4 signalling may be dependent on coex-
pression of other molecules such as c-met.
Such relationships require further investiga-
tion in primary tissues in order to fully under-
stand the prognostic significance of α6β4
integrin. 

The integrin αvβ6 is of interest in that it is
epithelial specific; it is expressed weakly or
is absent on normal adult epithelia, but is
increased in injured or inflamed epithe-
lium.65,66 Importantly, high expression of αvβ6
integrin has been detected on many cancers67

and correlates with reduced survival from
colon cancer.68 Work in our group has shown
that upregulation of αvβ6 integrin is signifi-
cantly associated with high tumor grade,
though not lymph node status, but is an

independent predictor of poor patient out-
come (unpublished data). Since αvβ6 is rarely
expressed in normal tissue, and has been
shown to promote tumor cell invasion, it pre-
sents a plausible target for therapeutic attack.

STROMAL CHANGES IN BREAST
CANCER

It has long been recognized that the stroma
associated with breast carcinomas differs from
normal;69 however, it is only in the last decade
that the critical role of the microenvironment
in determining tumor behavior has been
acknowledged. Indeed, a number of in vivo
model studies suggest that stromal alterations
alone can lead to induction of mammary car-
cinoma.70,71 There are many components to
the stromal microenvironment, each of which
can contribute to the modulation of tumor
behavior. Key features include cellular com-
ponents, such as fibroblasts and inflammatory
cells, and the extracellular matrix proteins.
The tumor-associated vasculature clearly has
an important influence on tumor behavior
but is not covered here since this is a topic in
its own right.

Cellular changes in the breast cancer
microenvironment

One of the main cellular components of the
stroma is the fibroblast population, which
undergoes activation in the tumor environ-
ment to form myofibroblasts72 which have a
pleiotropic effect on tumor cells and the envi-
ronment. Differences in the pattern of gene
and protein expression have been identified
between peri-tumoral and normal fibro -
blasts,73,74 and a number of these gene families
are implicated in promotion of tumor growth
and invasion. For example, it has recently
been shown that tumor-associated fibroblasts
(TAFs) secrete high levels of the chemokine
stromal cell-derived factor-1 (SDF-1), which
binds to the CXCR4 receptor on breast cancer
cells, promotes tumor growth and invasion,75

and is critical for metastatic spread of breast
cancer cells to bone and lung.76 In keeping
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with this experimental data, it has been shown
that elevated SDF-1 levels in human breast car-
cinomas correlate with the presence of lymph
node metastases, and with reduced disease-
free and overall survival.77

Fibroblasts are also the major source of
extracellular matrix proteins and matrix-
degrading proteolytic enzymes, both of which
have important functions in tumor progression,
and are discussed further below. However, as
the contribution of TAFs to breast cancer pro-
gression becomes more widely accepted, atten-
tion has focused on determining the precise
nature of these cells and how their altered
function is generated. The changes in gene
expression exhibited by TAFs are thought to
arise largely as a response to tumor-derived
signals; however, there is growing evidence
to indicate that the peri-tumoral stromal popu-
lation may undergo independent genetic and
epigenetic modifications,78–81 and such
changes may influence the function of the
stromal population and contribute to their
tumor-promoter role. It has also been sug-
gested that independently acquired genetic
alterations in the stromal population may
influence the diversity in clinical outcome
observed in breast cancer.78 This has recently
been illustrated in an analysis of p53 mutations
in tumor-associated stroma, whereby somatic
p53 mutations in the stroma (but not in the
epithelium) of breast cancer were associated
with regional lymph node metastases,82 and in
the absence of p53 mutations, loss of heterozy-
gosity and allelic imbalance at other loci in the
stroma associated with metastases. This is one
of the first studies to provide definitive evi-
dence of the importance of stromal changes in
breast cancer. 

Changes in the extracellular matrix in
breast cancer

The extracellular matrix (ECM) provides a
scaffold for epithelial cells in tissues; through
direct adhesive interactions, or via cross-talk
with classical signalling cascades, the ECM has
a central role in controlling epithelial cell
growth, differentiation and migration.83–85

Basement membrane (BM) represents a
specialized form of the ECM laid down at
epithelial–stromal junctions and around blood
vessels. In addition to a modulatory role, ECM
and BM act as important physical barriers to
invasion by tumor cells. It is clear then that
changes in the composition and integrity of
the ECM may profoundly influence tumor
behavior.

The ECM around breast cancer differs
from normal breast.86 Fibronectin expression
is increased in the stroma of many breast can-
cers, and changes in the isoform profile have
been described with upregulation of protein
containing the so-called ED-A and ED-B
domains.87,88 Whilst many in vitro studies indi-
cate a role for fibronectin, particularly in pro-
moting breast cancer cell motility or
growth,89,90 few tissue studies have established
the prognostic value of enhanced fibronectin
expression. Yao et al49 recently demonstrated
that high fibronectin expression was associ-
ated with reduced disease-free and overall sur-
vival in univariate, but not multivariate,
analysis. This finding was in agreement with an
earlier immunohistochemical study,91 though
this conclusion has not been universal.92

Interestingly, most studies do not distinguish
between the different fibronectin isoforms,
which is likely to have an important influence
on the results. A distinct form of truncated
fibronectin, termed migration-stimulating fac-
tor (MSF), has been characterized; as the
name implies, MSF stimulates cell migration
but expression is confined to fetal and tumor
tissues.93 However, the prognostic significance
of this isoform has not yet been established.

Another ECM protein shown to be con-
sistently upregulated in breast cancer is
Tenascin-C (TN-C). TN-C is a multifunctional
protein which can influence cell behavior
directly through interactions with cell surface
receptors, and indirectly through binding to
other matrix proteins such as fibronectin, and
altering their interaction with cells.94 High
expression of TN-C has been related to the
presence of lymph node metastases,91 local
and distant recurrence,95 and reduced sur-
vival;91 expression of TN-C in DCIS has been
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suggested to predict progression to invasion.96

However, as with many of the ECM proteins,
diversity is generated through expression of
alternatively spliced isoforms, which intro-
duces functionally relevant domains into
the mature protein.97 Several studies have
indicated a switch towards larger molecular
weight isoforms in tumor tissues compared to
normal.98–100 Work in our laboratory has
detected very specific changes in TN-C iso-
form profile in breast cancers, with induction
of two isoforms not usually found in normal
breast tissue: one containing exon 16 (TN-
C16) and one containing exons 14 plus 16
(TN-C14/16).101 Whilst these isoforms appear
to specifically promote breast cancer growth
and invasion (unpublished data), their prog-
nostic value is not yet established, partly due
to lack of good reagents to these splice vari-
ants. A further member of the Tenascin family
is TN-W, which has recently been shown to be
upregulated in breast cancers though is
undetectable in normal breast tissue.102

Interestingly, TN-W appears to be particularly
upregulated in low-grade breast cancers, and
has been suggested to be an early marker of
activated tumor stroma.102 Extending the work
on Tenascin members and their isoforms is
likely to prove valuable since tumor-specific
TN-C isoforms are already being successfully
targeted in other malignancies.103

Further emphasizing the importance of
tumor-specific splice variants, a recent report
has shown that a switch in laminin isoform
profile, from β2-containing to β1-containing
laminins, occurs during progression of breast
cancer.104 These novel laminin isoforms are
deposited in newly formed tumor blood ves-
sels and again represent a potential therapeu-
tic target.

From this discussion it is very apparent that
the changes in ECM in tumors are complex. A
recent study used gene expression microarray
analysis to determine the patterns of ECM
changes in breast cancer.105 They showed that
breast cancers could be classified according to
their profile of ECM expression, and that this
had clinical significance with tumors exhi -
biting overexpression of protease inhibitors

having a favorable outcome, whilst those with
high expression of integrin and metallopepti-
dases having a poor prognosis.105

Matrix remodeling in breast cancer

In addition to changes in the extracellular
matrix composition, the matrix is also altered
through remodeling. This is generated
through the action of proteolytic enzymes, of
which there are many but those most com-
monly implicated in cancer include the
matrix metalloproteinases (MMPs), the uroki-
nase plasminogen activator system and the A
disintegrin and metalloproteinases (ADAMs).
Each of these protein families has been shown
through, in vivo and in vitro model systems, to
play a role in cancer progression, and parallel
tissue studies are starting to identify their
potential prognostic value. A large body of
literature surrounds the MMP family and
accordingly this discussion will focus on the
role of the MMPs in breast cancer. 

Matrix metalloproteinases

The human MMP family comprises 24 mem-
bers which between them can degrade virtu-
ally all components of the extracellular
matrix.106–108 They are zinc-binding endopep-
tidases which share a number of functional
domains including: (i) a signal peptide required
for secretion; (ii) a propeptide domain which
interacts with the zinc-binding site and main-
tains the enzyme in an inactive form; (iii) a cat-
alytic domain which contains the zinc-binding
site with the exception of the matrilysins; and
(iv) a hemopexin/vitronectin-like domain con-
nected to the catalytic domain via a hinge.
Traditionally, MMPs have been classified
according to their substrate specificity but
with the growing complexity of the family,
and their overlapping activity, they are increas  -
ingly classified on a structural basis (see
Figure 5.2).

One of the defining characteristics of
MMPs is the tight regulation of their activity.
They are under the control of a variety of
naturally occurring inhibitors including the

58 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER

Walker-8050-05:Walker-8050-05.qxp 5/30/2008 4:49 PM Page 58



CELL–CELL AND CELL–STROMAL INTERACTIONS   59

Enzyme Substrate Structure

Matrilysin (MMP-7) Proteoglycan core protein
FN, Ln, denatured collagens

Matrilysin 2 (MMP-26) Denatured collagens

Collagenase 2 (MMP-8)

Collagenase 3 (MMP-13)

Collagenase 1 (MMP-1) Collagens I, II, III, VII, X

Collagens I, II, III

Collagens I, II, denatured
collagens, aggrecan

Stromelysin 1 (MMP-3)

Stromelysin 2 (MMP-10)

Metalloelastase (MMP-12)

RASI (MMP-19)

Enamelysin (MMP-20)

MMP-27, C-MMP (MMP-22)

Proteoglycan core protein
FN, Ln, denatured collagens
Collagens IV, V, IX, X

Denatured collagens
Collagens III, IV, V

Elastin

Stromelysin-like

Ameloganin

Not established

Stomelysin 3 (MMP-11) FN, Ln

Denatured collagensX-MMP (MMP-21)

Epilysin (MMP-28)

Gelatinase A (MMP-2)

Gelatinase B (MMP-9)

Denatured collagens,
Native collagens IV, V
VII, X, FN, Elastin

Denatured collagens,
Native collagens IV, V

MT 1-MMP (MMP-14)

MT 2-MMP (MMP-15)

MT 3-MMP (MMP-16)

MT 5-MMP (MMP-24)

Pro-MMP-2, pro-MMP-13, FN, 
Nidogen, aggregan, collagen I, III

Pro-MMP-2, Ln

Pro-MMP-2

Pro-MMP-2

MT 4-MMP (MMP-17)

MT 6-MMP (MMP-25)

CA-MMP (MMP-23)

Pro-MMP-2

TNFα convertase

Not established

Predomain

Pro-domain

Catalytic domain

Furine domain

Hinge domain

Hemopexin domain

Zinc-binding site

Transmembrane domain

Cytoplasmic domain

GPI anchor domain

Cysteine array

Ig-like domain

Signal anchor

Figure 5.2 Classification and structure of matrix metalloproteinases (MMPs). MMPs may be classified according to sub-
strate specificity (collagenases, stromelysins, gelatinases) or according to structural similarity. The simplest MMP is the
Matrilysin subgroup, comprising a signal prepreptide domain, a propeptide that maintains the enzyme in the inactive
form, and the catalytic domain with the zinc-binding site. The collagenases, stromelysins, metalloelastase, enamelysin,
MMP-19 and MMP-27 contain an additional hemopexin domain, which provides substrate specificity. The gelatinases
also contain a series of fibronectin type II units, whilst stromelysin-3, epilysin and MMP-21 have a furin-like cleavage site
which allows intracellular activation. The membrane type (MT)-MMPs form a distinct group and are linked to the cell
membrane either via a transmembrane domain or with a glycosylophosphatidyl-inositol (GPI) anchor. CA-MMP con-
tains a unique cystein array and immunoglobulin-like domain in the C-terminal, with an N-terminal signal anchor
targeting it to the cell membrane. (Adapted from Chabottaux and Noel.108)
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tissue inhibitors of metalloproteinases (TIMPs)
of which there are four,109–112 as well as the
plasma inhibitor α2-macroglobulin113 and the
so-called reversion-inducing cysteine-rich pro-
tein with Kazal motifs (RECK).114 The majority
of MMPs are secreted as inactive precursors or
may be secreted in their active form following
cleavage of the propeptide intracellularly by
furin-like convertases.115 A distinct group of
MMPs are membrane associated, either via a
transmembrane domain (MT1-, MT2-, MT3-
and MT5-MMP), a glycosylphosphatidyl-inositol
(GPI) anchor (MT4- and MT6-MMP) or an
N-terminal signal anchor (SA) targeting it to
the membrane (CA-MMP).116

In addition to their classical role in matrix
degradation, MMPs are becoming recognized
for a much broader range of activities. Thus,
MMPs can control cell proliferation through
release of matrix-bound growth factors, or
activation of latent growth factors, such as
MMP-3 release of insulin-like growth factor117

or MMP-7 activation of heparin-binding epi-
dermal growth factor (EGF)-like growth fac-
tor.118 Both MMP-1 and MMP-3 have been
shown to break down perlecan leading to the
release of basic fibroblast growth factor
(FGF), which is a potent mitogen for endothe-
lial cells.119 A number of other MMPs are
involved in angiogenesis, including the gelati-
nases120 or some of the MT-MMPs which can
activate vascular endothelial growth factor
(VEGF)121 or directly enhance vascular tubu-
logenesis.122 In contrast to the pro-angiogenic
role of most MMPs, MMP-19 appears to be a
negative regulator of tumor angiogenesis.123

Many of the MMPs are also involved in medi-
ating tumor cell invasion. The MT-MMPs have
been implicated in directly breaching base-
ment membrane barriers through the assem-
bly of invasive pseudopodia.124 MMP-3 and
MMP-7 have been shown to enhance tumor
invasion through cleavage of E-cadherin and
induction of the epithelial–mesenchymal
transition (EMT).125,126 Having such multifac-
eted roles in the processes relevant to tumor
progression, the relationship between MMP
expression and prognosis has been much
studied in breast cancer, and despite the

complexity some clear patterns are beginning
to emerge.

A number of studies have demonstrated a
relationship between elevated gelatinase lev-
els and unfavorable prognosis in breast can-
cer. Iwata et al127 reported significantly higher
levels of MMP-2 in lymph node-positive breast
cancers compared to lymph node-negative
ones, and elevated MMP-2 and MMP-9 relative
to their inhibitors TIMP-2 and TIMP-1 have
been associated with lymph node positivity
and reduced survival.128,129 In a separate study,
MMP-2 positivity in breast cancer was identi-
fied as an independent predictor of reduced
disease-free and overall survival,130 and has
also been shown to predict poor response
to antiestrogen therapy.131 The prognostic
value of MMP-9 is less consistent, with some
studies reporting a positive association with
more aggressive disease,132 others no associ-
ation133,134 and even an inverse relationship
with outcome; Scorilas et al135 found overex-
pression of MMP-9 to be an independent pre-
dictor of improved survival in node-negative
patients. In contrast, two recent studies have
shown MMP-9 to be related to reduced sur-
vival136 and to act as an independent predictor
of poor prognosis.137

The MT-MMPs are emerging as key
enzymes in promoting breast cancer progres-
sion.124,138 Several studies have demonstrated
a relationship between MT1-MMP and the
presence of lymph node and/or distant meta -
stases:133,139,140 and elevated MT1-MMP mRNA
in breast carcinomas has been shown to pre-
dict significantly reduced survival even when
adjusted for factors such as tumor size and
lymph node status.141 No such correlation has
been shown with MT2-MMP, and MT3-MMP
has not been detected in breast tissue.139

Whereas MT4-MMP was identified in breast
cancer cells, the role of this and MT5-MMP in
breast cancer is not yet established,142 and
MT6-MMP appears to be expressed predomi-
nantly by leukocytes.143

Increased expression of MMP-1 has been
associated with lymph node metastases144 and
poor prognosis145 in breast cancer, and was also
one of the genes in the 70-gene expression
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signature identified by Van’t Veer et al146 to pre-
dict distant metastases in lymph node-negative
patients. MMP-1 is also implicated in mediating
lung metastases in a mouse model of breast
cancer.147 And, interestingly, elevated mRNA
levels have been identified as a marker for pre-
dicting the development of invasive carcinoma
from atypical ductal hyperplasia.148

Stromelysin 3 (MMP-11) was initially cloned
as a gene differentially expressed in malignant
compared to benign breast tissue149 and has
been shown to be expressed exclusively by
peri-tumoral fibroblasts.150–152 Expression lev-
els of MMP-11, either by in-situ hybridization
(ISH) or by immunohistochemistry (IHC),
are associated with the presence of lymph
node metastases,153 and both recurrence-free
and overall survival;153–156 and in node-positive
patients, elevated MMP-11 provides a strong
independent prognostic parameter for dis-
ease-free survival.156

Collagenase 3 (MMP-13) was also first iden-
tified in breast carcinomas and has been local-
ized predominantly to stromal cells of invasive
carcinomas.157,158 In a recent study, including a
series of ductal carcinoma in situ (DCIS) cases,
MMP-13 was identified in the peri-ductal
stroma of 7 of 8 cases exhibiting microinva-
sion, but not in 9 cases without microinva-
sion.159 Although further studies are required
to confirm this, it has been proposed that
MMP-13 may play a pivotal role in the transi-
tion of DCIS to invasive disease, and may serve
as a useful prognostic marker.

Finally, over recent years the impact of func-
tional single nucleotide polymorphisms (SNPs)
on modifying disease behavior has become evi-
dent. SNPs in the promoter region of several
MMP genes influence levels of gene expres-
sion.160–163 A study in our laboratory has shown
that the 2G/2G genotype of MMP-1, which
generates an increased level of gene expres-
sion, was more frequent in the lymph node-
positive patients and conferred a 3.9-fold
increased risk of lymph node metastasis, whilst
the C/T genotype of MMP-9 was found to confer
a 3.6-fold increased occurrence of lymph node
metastasis.164 Przybylowska et al165 reported a
similar association between the MMP-1 2G/2G

genotype and lymph node metastasis – in
patients with breast cancer they showed no
such association with the MMP-9 T allele. Such
studies underline the biological role of MMPs
in breast cancer and these genetic variations
may help explain some of the individual varia-
tion observed in breast cancer behavior.

CONCLUSIONS

There is considerable experimental evidence
which indicates the importance of cell–cell and
cell–stromal interactions in modulating tumor
cell behavior, and some of these systems suggest
that microenvironmental cues may have a domi -
nant role in determining epithelial cell func-
tion. Given the profound impact of these
interactions in model systems, it is perhaps
somewhat surprising that many of the molecules
involved such as cadherins, integrins, proteolytic
enzymes and matrix proteins, do not have
unequivocal prognostic value. This almost cer-
tainly relates, at least in part, to issues surround-
ing activity status and receptor functionality
which are not easily resolved in tissue-based
studies. However, despite these limitations,
some consistent and interesting data are emerg-
ing. For example, the relationship between
P-cadherin and the BRCA-1 phenotype, the
interactions of α6β4 with signaling molecules
frequently expressed in breast cancers, and
the association of the αvβ6 integrin with aggres-
sive tumor behavior, all contribute prognostic
information, and also open therapeutic oppor-
tunities. Similarly, the identification of tumor-
specific isoforms of extracellular matrix proteins
is an exciting development, and whilst their
prognostic value is not yet fully established they
again may be exploited for therapy. Members of
the MMP family continue to show prognostic
value and functional relevance in breast cancer
progression.

Finally, one of the most fascinating stories
emerging is the concept that tumor-associated
stroma may itself exhibit significant genetic
abnormality: this challenges the widely held
view of a ‘reactive’ stroma and really does sug-
gest that the stroma is an intrinsic part of
the tumor and could be just as important in
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predicting tumor behavior as the tumor cells
themselves.
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“… there are truths but there is not truth”

A Camus: Le mythe de Sisyphe

INTRODUCTION

This chapter will summarize several aspects of
nodal micrometastases in breast cancer. It will
briefly deal with the term itself, the methods
used for the detection of these low-volume
metastases, and some interpretation issues.
Finally, it will discuss the prognostic and predic-
tive implications of micrometastases: whether
they have a prognostic impact on survival, and
whether they are predictive of nonsentinel
node involvement when found within a sen-
tinel lymph node. Obviously, predictive, in
this sense is different from the general use of
this term, but is nevertheless justified.

MICROMETASTASES, OCCULT
METASTASES, ISOLATED
TUMOR CELLS, AND THEIR
DEFINITIONS

Metastases (from Greek: changing state/change
of state) are tumor deposits away from the pri-
mary neoplasm. Although instances of metasta-
sis are known in benign conditions, this is
generally the most important hallmark of malig-
nant behavior. The prefix micro- (from Greek:
small) suggests that micrometastases are indeed
small metastases, and in this context the term
reflects that they cannot be identified clinically
or by naked-eye observation.

If one delves in the fields of medical history,
it may happen that who was the first to make
a statement in some area is challenged by

others. To my knowledge, micrometastases were
originally named so by Huvos et al,1 because
they had been supposed to be detectable only
by microscopy instead of being picked up at
gross examination. A noninclusive size limit of
2 mm was suggested by these authors, who
found no survival disadvantage for breast can-
cer patients with only micrometastases as com-
pared to those with no metastasis at all, after a
minimum follow-up of 8 years. Although this
study suffers from low patient numbers (only
18 patients with micrometastasis) and lack of
detail on the pathologic assessment of the
lymph nodes (probably meaning that a single
hematoxylin and eosin (H&E)-stained slide
was assessed for each), it can be credited for a
definition of micrometastases. It also sug-
gested that not only the number of metastatic
nodes but also the tumor burden in the lymph
nodes may be an important aspect of nodal
involvement.

Occult metastases have been well known by
pathologists for more than 50 years2,3 and
were often reported to be of no real prognos-
tic value. However, the fact of being occult, i.e.
not disclosed by first microscopic inspection
but identified later by a more thorough or
more sensitive work-up (this definition of
“occult metastasis” will be used), does not
reflect a size or tumor burden adequately.
Such metastases may be smaller or larger than
2 mm, depending on what size the lymph
node investigated is and what the “standard”
or original pathologic examination consisted
of.4 Because the size of a metastasis influences
its chances of being detected by limited sam-
pling, micrometastases are linked to occult

Sentinel nodes, micrometastases
and isolated tumor cells
Gábor Cserni

6
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metastases since many of them would remain
occult if a single H&E section were to be
assessed per lymph node; both terms reflect
low-volume metastatic involvement.

The definitions of micrometastasis are not
uniform. Most investigators use the 2 mm
inclusive upper cut-off limit, as suggested by
the tumor node metastasis (TNM) classifica-
tion of malignant tumors,5,6 whereas others
use a 1 mm cut-off size,7,8 a larger 0.2 cm2 or a
<1 mm2 cut-off area.9,10 The European Working
Group for Breast Screening Pathology
recently assessed the pathology practice relat-
ing to sentinel lymph nodes (SLNs) by means
of a questionnaire and found that the term
micrometastasis was used by 93% of the
responders; the definitions given for this cate-
gory included 17 somewhat different enti-
ties.11 For uniformity of use, adherence to the
TNM definition of micrometastasis, last
updated in 2002, which includes a lower cut-
off value of 0.2 mm, is strongly recommended.
However, it must be noted that this definition
is not unanimously reflected in current and
earlier publications, and one should always
check definitions before interpreting retro-
spective data. 

According to the current definition, the for-
mer group of micrometastasis was split into
two diagnostic categories: the micrometas-
tases per se and a disputed category labeled
with the misnomer of “isolated tumor cells”
(ITCs).5,6,12 The latter is also called submi-
crometastasis by some,13 but the name of
nanometastasis has also been suggested.14

Although the Union Internationale
Contre le Cancer (UICC) and the American
Joint Committee on Cancer (AJCC) are sup-
posed to use the same TNM system for the
determination of the anatomic extent of
malignant disease, the wording in the two
main relevant publications of these bodies
differ in a minimal extent, and this may be
the source of some differences in interpre -
tation and hence classification. The sixth
edition of the UICC TNM Classification of
MalignantTumours5 defines ITC as “single
tumor cells or small clusters not more than
0.2 mm in greatest dimension, that are

usually detected by immunohistochemistry
or molecular methods; they do not typically
show evidence of metastatic activity or pene-
tration of vascular or lymphatic sinus walls.”
The AJCC Cancer Staging Manual6 and its
abridged variant used a somewhat different
wording, and defined ITC as “single cells or
small clusters of cells not greater than
0.2 mm in largest dimension, usually with no
histological evidence of malignant activity
(such as proliferation or stromal reaction).”
The relation to sinus walls is not mentioned
in the latter description.6 The use of the
pN0(i+) symbol to denote ITC was also dif-
ferent in the AJCC publications6 from the
one suggested in the UICC publications.5,12

However, in a revision it was made clear that
the “(i+)” denoted the presence of ITC and
not immunohistochemistry (IHC) as the
method of its detection (Figure 6.1).15,16

Although it may seem that size is a major
criterion to distinguish between ITC and
micrometastases, and therefore a node-
negative and a node-positive stage (from stag-
ing and management aspects), both major
publications5,6 cite a UICC paper where the
tumor cell location within the lymph node,
and the so-called metastatic activity, were also
listed as distinguishing features.12

The present TNM categories were also
endorsed by the United Kingdom National
Health Service Breast Screening Programme17

and their respective labels are given below:

• pN1mi: micrometastasis;
• pN0(i+): isolated tumor cells, identified by

microscopy, i.e. morphological methods,
including H&E staining and/or IHC;

• pN0(mol+): evidence of ITCs by molecular
methods, most commonly reverse tran-
scription polymerase chain reaction (RT-
PCR) only;

• whenever ITCs are looked for by morpho-
logic or molecular studies, but these yield
negative results, the pN0(i−) and pN0(mol−)
symbols are to be used;

• pN0 is to be used when no metastases are
found, but no special methods are used for
the search of “occult” metastases.
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The TNM classification also suggests that
whenever there are multiple distinct foci
of metastatic involvement, only the largest
should be considered for classification.

With all this in mind, it must be mentioned
that the reproducibility of these staging cate-
gories is less than optimal. A group of
European pathologists with expertise in breast
pathology examined and interpreted 50 cases
represented by digital images, all approaching
the differential diagnosis of micrometastases
and ITCs. The kappa value for the consistency
of categorizing low-volume nodal load into
micrometastasis, ITCs or none of these was
0.39 (reflecting fair reproducibility) when

each participant used his/her interpretation
of the TNM definitions. This figure changed
to 0.49 (still reflecting only moderate repro-
ducibility) in a second circulation of the same
set of images performed after a discussion
aimed at making the interpretation of the def-
initions more uniform.18 The kappa value was
≤0.57 even on a single institutional level.19

One source of interpretative trouble stems
from the classification of nodal metastases of
invasive lobular carcinomas, which often infil-
trate the lymph nodes by a noncohesive single
cell pattern (Figure 6.2). A group of patholo-
gists could achieve a very good consistency in
diagnosing such lesions following the partly

ITC

HE

IHC

MICROMETASTASIS

Figure 6.1 Isolated tumor cells (ITC; left side images) and micrometastases (right side images) can be detected by
both hematoxylin and eosin staining (HE; top images) and cytokeratin immunohistochemistry (IHC; bottom images).
Note that ITC are generally visualized by IHC but larger clusters close to 0.2 mm can also be first seen on HE slides.
Likewise small micrometastases may escape HE detection and may require IHC for identification. Bars, 0.2 mm; all
images at 400× magnification, except top right at 100×.
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image-guided interpretative guidelines agreed
on before testing, but several pathologists
within that study, including the present
author, raised concerns about diagnosing a
relatively high total metastatic nodal volume
as ITCs on the basis of the infiltrative pattern
(Roderick Turner, personal communication,
June 2007). Another source of confusion
comes from the localization of low volume
(≤0.2 mm in greatest dimension) nodal involve-
ment; some would not consider this a matter
of diagnostic distinction between micrometa  -
stases and ITCs, and would make the distinc-
tion simply on the basis of size criteria,
whereas others would consider extrasinus -
oidal and intraparenchymal lesions of this size
as micrometastases.18,20 Such interpretative
issues may seriously affect prognostic, predic-
tion and consequently therapy-related conclu-
sions of most studies lacking a uniform
pathology review of SLN slides. These prob-
lems in interpretation also highlight the need
for a more precise definition of ITCs and
micrometastasis categories, preferably with
visual aid and examples on how to classify
challenging cases.

THE USE OF MULTILEVEL ASSESS-
MENT, IMMUNOHISTOCHEMISTRY
AND MOLECULAR TECHNIQUES
FOR THE DETECTION OF LYMPH
NODE/SENTINEL LYMPH NODE
INVOLVEMENT

The presence of occult metastases can be
confirmed by a more detailed sampling of
the lymph nodes and/or the use of a more
sensitive method to detect them. As a conse-
quence, examining several slices or step sec-
tions from a lymph node and/or introducing
immunostains in their investigation leads to an
increase in occult nodal involvement and an
upstaging from node-negative to node-posi tive
status when compared to a methodology
which does not use these tools.

It has been known for a long time that IHC
aimed at highlighting the presence of epithe-
lial markers (mainly cytokeratins) in lymph
nodes may increase the detection rate of small
metastases.21 However, it must be remem-
bered that not everything that is cytokeratin-
positive represents metastatic nodal deposits;
cytokeratin-positive dendritic cells are normal
constituents of the lymph nodes,22,23 and
benign epithelial inclusions24 or dislodged
papillary fragments25 are also positive. Rarely,
macrophages and plasma cells may also stain
nonspecifically, and different contaminants
and carry-over may hinder interpretation
of cytokeratin immunostaining.26 In cases of
uncertainty, the TNM general rules suggest
that the lower category (less advanced disease
stage) should be opted for. Therefore, a node-
negative status should be the conclusion if
one is in doubt about the nature of the cyto  -
keratin positivity.27

SLNs can be defined as lymph nodes with
direct lymph drainage from the primary tumor
site.26 Sentinel lymph node biopsy (SLNB)
seems an ideal surgical method for selecting
the most likely sites of regional nodal meta -
stases, and therefore selecting the few or only
lymph nodes which should be subjected to
more scrutiny in order to identify otherwise
occult metastases. According to the first rele-
vant report on this issue, the addition (per half

Figure 6.2 Discohesive pattern of a micrometastasis
from lobular carcinoma. Note that some pathologists
would consider this as multiple “isolated tumor cells”
(requiring a comment about overall nodal tumor vol-
ume) because none of the cells or touching cell clusters
are >0.2 mm. Bar, approximately 0.2 mm; 400× magnifica-
tion, cytokeratin. Courtesy of Professor Simonetta
Bianchi, Florence, Italy.
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SLN) of two extra H&E stained levels and one
stained with cytokeratin IHC resulted in a 13%
nodal upstaging as compared to a previous
series of comparable breast cancer patients
staged by axillary dissection with a standard
pathological assessment of the lymph nodes.28

The upstaging was mainly due to the higher
detection rate of micrometastases (38% in the
SLNB group vs 10% in the axillary clearance
group). Many other studies have confirmed
these observations, and the upstaging rates
vary between 9 and 47%.29

The use of cytokeratin IHC is one of the
most controversial issues in the examination
of axillary lymph nodes. SLNs are often sub-
jected to this method when negative by H&E.
Although several guidelines do not recom-
mend the routine use of IHC for the evalua-
tion of SLNs,30 a questionnaire based survey
by the European Working Group for Breast
Screening Pathology suggested that 71% of
the 240 pathology laboratories assessed used
IHC regularly for SLNs negative by H&E.11

This rate may be even higher in the United
States (Roderick Turner, personal communi-
cation, at Sentinel Node 2004, Santa Monica,
December 2004).

The value of cytokeratin staining in high-
lighting occult nodal involvement depends on
several factors. When step sectioning is done,
the smaller the steps, the lower is the extra
yield in nodal positivity detected by adding
IHC to the standard histological stains.31–33

The size of the metastatic involvement is also
important, since most of the cases identified
by IHC belong to the micrometastasis or ITC
categories. The pattern of nodal involvement
of lobular carcinomas is often prone to escape
traditional detection by light microscopy:
therefore, the addition of cytokeratin IHC
increases the rate of nodal positivity more
than in cases of ductal carcinomas.34–36 IHC of
SLNs also suggests a higher upstaging rate if
the primary tumor is of the lobular type, and
with this histological type immunostaining
may highlight not only ITCs and micrometas-
tases but also some smaller macrometastases.37

Although cytokeratin IHC may increase
the detection rate of nodal involvement, it

disproportionally increases the detection rate
of ITCs, many of which may escape detection
even if visible. The results of automated analy-
sis of SLNs immunostained with cytokeratin
antibodies suggest that very small volumes
may remain unnoticed by conventional micro-
scopic examination.38,39

Once it is established that the cytokeratin-
positive cells are from the tumor, histopathol-
ogy cannot differentiate between cells which
got to the lymph node by an active metastatic
process and those which were dislodged by
prior manipulation of the tumor. Indeed, diag-
nostic and localization procedures (needle
biopsies, wire or radioisotopic localizations)
and massage, sometimes used in order to pro-
mote the migration of the tracers during
SLNB, have been reported as, or supposed to
be, possible ways of tumoral seeding.25,40,41 If
noticed, such seeding would most likely be
labeled as ITC, giving further support for
including these in the pN0 category.

The combination of multilevel assessment
and IHC yields the highest rate of upstaging
when compared to a single H&E level assess-
ment.29 Most macrometastases are discovered
on the first or first few levels of sectioning SLN
tissue blocks. Micrometastases may need a
more intensive search, whereas ITCs are rather
randomly distributed in the lymph nodes.31–33,42

Targeting the search for nodal involvement
and concentrating it to the area around the
junction of the tumor-draining afferent lym-
phatic channel, visualized by either the blue
coloration or the highest intranodal radioactiv-
ity count, may help in finding most nodal
involvement with less effort,43,44 but this needs
further prospective investigation. It seems obvi-
ous that no histology protocol can aim at detect-
ing all ITCs in a lymph node, and histology
protocols should be devised in a way to be able
to exclude a given size metastasis with a reason-
able accuracy.45 Whether micrometa stases should
be the category to exclude is a matter of
debate, and this will be discussed further at the
end of this chapter.

Molecular methods to highlight nodal
involvement of very low volume include flow
cytometry46 and RT-PCR assays.29 These are
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very sensitive but lack sufficient specificity: a
challenge which mandates the use of several
markers. Most reports on RT-PCR in lymph
nodes report false-negative cases, i.e. lymph
nodes with histologically proven metastatic
involvement but negative molecular testing.
Whereas such nodes are obviously positive,
those which test positive with the RT-PCR
assay but are negative by histology may either
represent false-positive testing or histologi-
cally occult nodal involvement.47 This may
also justify labeling them as pN0(mol+). Real-
time quantitative RT-PCR assays are more
promising, as manipulations of the cut-off lev-
els may make the tests more specific.48,49

However, it must be remembered that molecu -
lar staging may also be biased by sampling
errors43,44,50 and nontumoral epithelial tissue
presence,24 and this strengthens the need for
histological verification of molecular results.

Histopathology will therefore remain the
standard diagnostic approach to SLNs and
nodal staging. The differences in histology
protocols may however cause differences in
treatment options,51 and perhaps even out-
come. Such differences may be overcome by
devising regional, national or international
guidelines on the minimum requirements in
SLN histopathology. Without such standard-
ization, outcome data will not be consistently
comparable.

THE PROGNOSTIC IMPACT OF
NODAL MICROMETASTASES

Nodal status is generally considered an impor-
tant prognostic factor. Several studies have
highlighted that the volume of metastatic
nodal load also represents a prognostic param -
eter beyond the node-positive versus node-
negative status. At one end of the spectrum,
metastasis in a large number of lymph nodes is
associated with a worse prognosis than the
involvement of a few lymph nodes,52,53 or
the involvement of a larger proportion of the
examined lymph nodes is worse than a lower
ratio of metastatic lymph nodes.54,55 When only
a few lymph nodes are involved, small metastases
lumped into the category of micrometastasis

may also represent a smaller prognostic disad-
vantage than larger metastases.56

The prognostic impact of micrometastases
in breast cancer is largely disputed. Some
authors found no survival disadvantage for
micrometastatic nodal involvement; others
have reported a worse associated outcome,
but only for disease-free survival and not
for overall survival; and still others described
a definite disadvantage (Table 6.1). Occult
metastases are often admixed with micro -
metastases in the quoted studies, especially in
the earlier ones. The methods of pathological
evaluation are also different from study to
study and many would be considered less
than optimal with our current knowledge;
most studies were aimed at detecting some
occult metastases and were not devised to
exclude all occult metastases of a given size. It
is likely that no attempt was ever made to
exclude the possibility of the identified
micrometastases being the tip of a larger
metastasis “iceberg” (Figure 6.3). As shown in
Table 6.1, the micrometastatic group often
comprised only a few cases and the follow-up
was also limited. Therefore, many of the
series have insufficient power to demonstrate
a minor benefit.

After reviewing many of the series pub-
lished, it was concluded that micrometastases
are of prognostic impact, but only large series
with long follow-up can demonstrate this.78,79

The need for a long follow-up, especially for
better differentiated tumors, was also stressed
by the analysis of the Survival Epidemiology
and End Results database.80 With the advent
of SLNB, nodal micrometastases are not
only found more frequently28 but smaller
micrometastases and ITCs are also increasingly
discovered. Theoretically, this may suggest an
even lesser survival disadvantage, which would
be backed up by most studies on the predictive
role of these small metastases, but some recent
studies report a worse disease-free survival
even with ITCs (Table 6.1).14,74,75 These later
studies are in keeping with the hypothesis that
metastases may develop early in the neoplastic
process as determined by the molecular signa-
ture of the tumor.81,82
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On the whole, the data relating to the prog-
nostic significance of micrometastases and
ITCs are nonconclusive, and partly due to the
lack of similar pathology methods (including
sampling of all lymph nodes, sectioning them,
using IHC, interpreting the findings, etc) they
are also incomparable. It can be expected that
the search for low-volume metastases in the
SLNs will result in a stage migration83 by dilut-
ing the traditional node-positive group with
the “better prognosis” micrometastatic cases,
and by concentrating the traditional node-
negative group by taking out of it some cases
with occult nodal involvement, resulting in a
virtual improvement of prognosis in both new
groups of node-positive and node-negative
cases. This phenomenon makes the new
results even less comparable with the histori-
cal reports listed in Table 6.1. The clinical tri-
als on SLNB have not yet had sufficient
long-term follow-up for definite conclusions
about survival with micrometastases, although

they support SLNB as a low morbidity staging
procedure. It may however be hypothesized
that patients with nodal micrometastases
receiving adjuvant systemic treatment would
derive some benefit from this treatment.56,77

One should not forget that when systemic
treatment decisions are based on nodal status,
this is considered as a marker of metastatic dis-
semination – albeit a rather imperfect marker.
Indeed, node-negative patients may die of dis-
ease and a subset of node-positive cases may
survive with locoregional treatment alone.
Therefore, it is not surprising that the role of
nodal status in influencing adjuvant treatment
decisions has lost some weight, or that other
prognostic factors have gained significance in
outcome prediction and therapeutic planning.
Although lymph node involvement is still
considered an important prognosticator,
according to the newer St Gallen consensus
statements, it does not automatically define
high risk and should be considered with other
risk factors.84,85 Interestingly enough, these guide-
lines suggest that both ITCs and micrometastases
should be ignored in risk allocation and treat-
ment decisions.84 The latter recommendation
is made despite the contradictory evidences
outlined in Table 6.1, with greater favor being
given to the significance of micrometastases
than to their lack. This is also in opposition
with the arbitrary TNM segregation of ITCs
and micrometastases into the pN0 and pN1
categories, respectively.

SENTINEL LYMPH NODE
MICROMETASTASES AND THE
PREDICTION OF NONSENTINEL
NODE INVOLVEMENT

When SLNB is performed, the finding of a
metastasis is generally perceived as an indica-
tion for axillary dissection or radiotherapy.
The detailed histological or molecular analy-
sis of the SLN and non-SLN status has led to
the recognition that many breast cancer
patients have metastases limited to the SLNs,
in keeping with the theory that the SLNs are
the most likely sites of regional nodal metasta-
sis.86–91 It has also been a common finding that

Figure 6.3 The “tip of the iceberg” phenomenon. The
sentinel lymph node containing the 90 μm large cluster of
cells (classified as “isolated tumor cells”) shown in the inset
was further sectioned at 250 μm, and turned out to be
involved by a micrometastasis measuring 390 μm shown on
the main field. Due to the fact of sampling, the lesion might
have been somewhat larger in one of the unsampled levels.
It should be accepted that size measurements are generally
not perfect and despite objective measures they represent
only the best approximation we can make. Similarly,
micrometastases may be upstaged to macrometastases. Bars,
0.2 mm; inset 400×; main picture 100×.
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the frequency of non-SLN metastases is
dependent on SLN metastasis size92 and some
other factors. In this context, micrometastases
are often reported to be associated with such
a low rate, and therefore risk of non-SLN
involvement, that several reports have con-
cluded that no further axillary treatment is
necessary in case of micrometastatic SLN pos-
itivity. In contrast, other studies have con-
cluded that even ITCs in the SLNs are
associated with a rate of non-SLN positivity
which justifies axillary clearance as a general
treatment option for any SLN involvement,
and such findings also support the use of
cytokeratin IHC in the evaluation of SLNs
(Table 6.2).

The relevant studies are rather heteroge-
neous from several aspects, and therefore
their meta-analysis may give more idea about
the risk of non-SLN metastases than any of the
individual reports.117 Until the relevant clini-
cal trials reach a reasonable follow-up time for
relevant conclusions, a 10–15% overall risk
may be the best estimation of non-SLN involve-
ment for cases with SLN micrometastases.117

This risk is very similar to the 5–10% false-
negative rate of SLNB itself.

It must also be considered that micrometa -
stases, as currently defined, are heteroge-
neous and this also relates to their size: they
form a continuum. Larger ones at the
macrometastasis edge probably reflect more
harm than the smaller ones at the ITC edge.
Likewise, some authors found that the rate of
non-SLN involvement is significantly higher
in patients with SLN micrometastases >1 mm
than in those with smaller SLN micrometas-
tases.111,114 Another study identified 1.3 mm as
a possible cut-off for higher (>10%) and
smaller non-SLN metastasis risk,118 whereas an
Austrian paper suggested that micrometastases
<0.5 mm were those in which the rate of non-
SLN positivity could be considered negligi-
ble.115 It must also be remembered that
studies which found it sufficient to identify
ITCs in a single IHC-stained slide of a 3 mm
thick slice of an SLN, and failed to exclude a
larger metastasis underlying this, must be con-
sidered with caution as regards the size of the

SLN involvement and the associated rate of
non-SLN positivity. On the other hand, stud-
ies using an enhanced method of metastasis
detection for SLNs, but a standard one to a
few H&E levels approach to non-SLNs (a very
rational, acceptable and practical approach to
nodal staging), are likely to underestimate the
risks of overall non-SLN involvement, but not
of macrometastatic non-SLN involvement.
(Pathological methods used are briefly sum-
marized in Table 6.2.)

Another consideration which should be
taken into account is the contribution of
other factors in models assessing the risk of
non-SLN involvement. Tumor size and lym-
phovascular invasion (LVI) are often reported
as parameters influencing this risk, along with
the number of SLNs involved, the number of
SLNs found, or alternately the ratio of SLNs
involved. 

Therefore, despite the fact that the overall
risk of non-SLN positivity associated with SLN
micrometastases and ITCs found in different
publications is generally low, and the estimate
of 10–15% quoted previously117 may generally
work well, there may be combinations of other
factors increasing or lowering this risk. For
example, patients with in situ carcino-
mas,119,120 small pT1a and pT1b (up to 1 cm
large) tumors without demonstrable LVI116,119

or with some special type tumors of good
prognosis (like tubular or cribriform carcino-
mas)116,121 would most certainly not benefit
from axillary dissection after the finding of a
micrometastatic SLN.

The interaction of different parameters has
generated the search for predictive tools such
as: the nomograms created at the Memorial
Sloan-Kettering Cancer Center (MSKCC)122

and at the Mayo Clinic;123 the scoring systems
generated by the MD Anderson Cancer
Center,97 the Tenon Hospital124 and the
Louisville sentinel lymph node study;125 or the
decision table stemming from an Australian
study.126 Some of these tools have been vali-
dated on independent datasets, but it seems
that the group with the lowest risk of non-SLN
involvement is very small, and this is where
the predictive tools may perform more

SENTINEL NODES, MICROMETASTASES AND ISOLATED TUMOR CELLS   77

Walker-8050-06:Walker-8050-06.qxp 5/30/2008 6:31 PM Page 77



78 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER

T
ab

le
 6

.2
St

ud
ie

s 
on

 S
L

N
B

-b
as

ed
 p

re
di

ct
io

n
 o

f 
n

on
-S

L
N

 m
et

as
ta

si
s 

in
cl

ud
in

g 
a 

m
in

im
um

 o
f 

25
 r

el
ev

an
t 

ca
se

s

Fi
rs

t a
ut

ho
r

R
ey

n
ol

ds
93

W
on

g94

M
ar

in
95

R
ut

le
dg

e96

R
ah

us
en

10

H
w

an
g97

de
n

 B
ak

ke
r98

A
bd

es
sa

la
m

99

Fr
én

ea
ux

10
0

N
um

be
r 

of
 p

at
ie

nt
s 

w
ith

 s
m

al
l

m
et

as
ta

se
s 

(n
on

-S
L

N
+;

 %
)

27
 N

1m
i o

r 
IT

C
 (

6;
 2

2%
)

28
 o

n
ly

 I
H

C
-p

os
it

iv
e 

(3
; 1

1%
)

29
 N

1m
i o

r 
IT

C
 (

8;
 2

8%
);

 1
8 

on
ly

IH
C

-p
os

it
iv

e 
(4

; 2
2%

)

29
 N

1m
i (

1;
 3

%
)

30
 N

1m
i (

<1
m

m
2 ) 

(8
; 2

7%
)*

30
 (

5;
 1

7%
)

32
 (

11
 o

f 
w

h
ic

h
 4

 I
T

C
; 3

4%
)*

35
 N

1m
i o

r 
IT

C
 (

7;
 2

0%
);

 5
 o

n
ly

IH
C

-p
os

it
iv

e 
(1

; 2
0%

)

35
 o

n
ly

 I
H

C
-p

os
it

iv
e 

(1
; 3

%
)

Fi
nd

in
gs

•
T

 a
n

d 
SL

N
 m

et
as

ta
si

s 
si

ze
 (

m
ic

ro
 v

s 
m

ac
ro

) 
ar

e
in

de
pe

n
de

n
t 

pr
ed

it
or

s 
of

 n
on

-S
L

N
+

•
T

1 
an

d 
pN

1m
i(

sn
) 

h
av

e 
lo

w
 r

is
k 

of
 n

on
-S

L
N

+

•
pT

 c
at

eg
or

y 
an

d 
n

um
be

r 
of

 p
os

it
iv

e 
SL

N
s 

ar
e

in
de

pe
n

de
n

t 
fa

ct
or

s 
pr

ed
ic

ti
n

g 
n

on
-S

L
N

+
•

A
 s

m
al

l s
ub

se
t 

of
 p

at
ie

n
ts

 w
it

h
 o

n
ly

 I
H

C
-p

os
it

iv
e

SL
N

s 
h

av
e 

ob
vi

ou
s 

n
on

-S
L

N
 m

et
as

ta
se

s

•
Pa

tie
n

ts
 w

ith
 m

ic
ro

m
et

as
ta

tic
 S

L
N

 h
av

e 
a 

ri
sk

 o
f

n
on

-S
L

N
 in

vo
lv

em
en

t, 
th

at
 m

ig
h

t b
e 

m
in

im
al

 fo
r

du
ct

al
-ty

pe
 T

1 
tu

m
or

s 
w

ith
ou

t L
V

I

•
N

on
-S

L
N

 p
os

it
iv

it
y 

di
ff

er
s 

si
gn

if
ic

an
tl

y
be

tw
ee

n
 c

as
es

 w
it

h
 S

L
N

 m
ic

ro
m

et
as

ta
si

s 
an

d
m

ac
ro

m
et

as
ta

si
s

•
R

is
k-

be
n

ef
it

 a
ss

es
sm

en
t 

is
 n

ee
de

d 
fo

r 
de

ci
si

on
s

on
 A

L
N

D

•
Pa

ti
en

ts
 w

it
h

 T
1a

 t
um

or
s 

or
 S

L
N

 m
ic

ro
m

et
as

ta
se

s
<1

m
m

2
st

ill
 h

av
e 

a 
ri

sk
 o

f 
n

on
-S

L
N

+

•
SL

N
 m

et
as

ta
si

s 
si

ze
 (

m
ic

ro
/I

T
C

 v
s 

m
ac

ro
),

 p
T

(p
T

1 
vs

 >
2

cm
) 

an
d 

LV
I 

ar
e 

th
e 

in
de

pe
n

de
n

t
fa

ct
or

s 
in

fl
ue

n
ci

n
g 

n
on

-S
L

N
+

•
T

 (
T

1 
vs

 >
2

cm
) 

an
d 

h
is

to
lo

gi
ca

l g
ra

de
 a

re
as

so
ci

at
ed

 w
it

h
 n

on
-S

L
N

+
•

A
L

N
D

 is
 s

up
po

rt
ed

 f
or

 lo
w

-v
ol

um
e 

SL
N

in
vo

lv
em

en
t

•
SL

N
 in

vo
lv

em
en

t, 
m

ac
ro

m
et

as
ta

ti
c 

SL
N

s,
 L

V
I,

ex
tr

ac
ap

su
la

r 
n

od
al

 in
vo

lv
em

en
t 

al
l i

n
cr

ea
se

th
e 

lik
el

ih
oo

d 
of

 n
on

-S
L

N
+

•
IH

C
 d

et
ec

te
d 

oc
cu

lt
 m

et
as

ta
se

s 
ar

e 
ra

re
ly

as
so

ci
at

ed
 w

it
h

 n
on

-S
L

N
+

Pa
th

ol
og

y 
of

 S
L

N
s;

 c
om

m
en

ts

4 
H

E
+

IH
C

; N
1m

i a
n

d 
IT

C
 c

on
si

de
re

d
as

 o
n

e 
ca

te
go

ry

H
E

/2
m

m
+

IH
C

 p
er

fo
rm

ed
 o

n
 o

n
ly

 4
9%

of
 t

h
e 

ca
se

s

T
h

e 
in

fl
ue

n
ce

 o
f 

SL
N

 m
et

as
ta

si
s 

si
ze

 c
ou

ld
 n

ot
 b

e
as

se
ss

ed
 r

el
ia

bl
y;

 p
ro

ba
bl

y 
m

ai
n

ly
 I

T
C

 id
en

ti
fi

ed

1–
7 

H
E

+
IH

C
 (

w
h

ol
e 

th
ic

kn
es

s 
at

 0
.5

m
m

 s
te

ps
);

 N
1m

i
an

d 
IT

C
 c

on
si

de
re

d 
as

 o
n

e 
ca

te
go

ry

3 
le

ve
l H

E
 (

+
IH

C
 n

ot
 s

pe
ci

fi
ed

);
 N

1m
i a

n
d 

IT
C

 c
on

si
d-

er
ed

 a
s 

se
pa

ra
te

 c
at

eg
or

ie
s

5H
E

+
IH

C
; N

1m
i a

n
d 

IT
C

 c
on

si
de

re
d 

as
 o

n
e 

ca
te

go
ry

;
m

ic
ro

m
et

as
ta

si
s 

de
fi

n
it

io
n

: <
1

m
m

2

1 
H

E
/2

–3
m

m
 s

lic
e 

– 
su

bs
et

: 3
 s

er
ia

l H
E

 a
n

d 
1 

IH
C

;
N

1m
i a

n
d 

IT
C

 p
ro

ba
bl

y 
co

n
si

de
re

d 
as

 o
n

e 
ca

te
go

ry

4 
H

E
+

4 
IH

C
 a

t 
25

0
μm

/s
lic

e 
– 

n
on

-S
L

N
s 

al
so

 3
–1

0
IH

C
; N

1m
i a

n
d 

IT
C

 c
on

si
de

re
d 

as
 s

ep
ar

at
e 

ca
te

go
ri

es
;

IT
C

 li
m

it
ed

 t
o 

3 
ce

lls

6F
S

+
SS

 (
H

E
)

+
IH

C
; N

1m
i a

n
d 

IT
C

co
n

si
de

re
d 

as
 o

n
e 

ca
te

go
ry

1–
4H

E
+

(1
–4

)×
6I

H
C

; N
1m

i a
n

d 
IT

C
 c

on
si

de
re

d 
as

 o
n

e
ca

te
go

ry
; o

ve
rl

ap
 w

it
h

 H
ou

ve
n

ae
gh

el
 e

t 
al

11
6

(C
on

tin
ue

d)

Walker-8050-06:Walker-8050-06.qxp 5/30/2008 6:31 PM Page 78



SENTINEL NODES, MICROMETASTASES AND ISOLATED TUMOR CELLS   79

T
ab

le
 6

.2
(C

on
ti

n
ue

d)

Fi
rs

t a
ut

ho
r

Z
ga

jn
ar

10
1

C
se

rn
i10

2

K
am

at
h

10
3

C
ar

co
fo

ro
10

4

C
al

h
ou

n
10

5

M
en

es
10

6

Ja
ku

b10
7

K
ra

ut
h

10
8

D
i T

om
m

as
o10

9

N
um

be
r 

of
 p

at
ie

nt
s 

w
ith

 s
m

al
l

m
et

as
ta

se
s 

(n
on

-S
L

N
+;

 %
)

31
 N

1m
i a

n
d 

5 
IT

C
 (

4;
 1

1%
fo

r
al

l, 
13

%
fo

r 
N

1m
i, 

0%
fo

r 
IT

C
)

43
 N

1m
i o

r 
IT

C
 (

5;
 1

2%
fo

r 
al

l,
4/

39
 f

or
 N

1m
i, 

1/
4 

fo
r 

IT
C

)

46
 N

1m
i o

r 
IT

C
 (

7;
 1

5%
);

26
 o

n
ly

 I
H

C
-p

os
it

iv
e 

(2
; 8

%
)

58
 N

1m
i (

8;
 1

4%
)

61
 o

n
ly

 I
H

C
/I

T
C

-p
os

it
iv

e 
(3

; 5
%

)

61
 (

12
; 2

0%
fo

r 
al

l, 
20

%
fo

r 
N

1m
i,

19
%

fo
r 

IT
C

)

62
 o

n
ly

 I
H

C
-p

os
it

iv
e 

(9
; 1

5%
)

62
 (

14
; 2

3%
fo

r 
al

l, 
21

%
fo

r 
N

1m
i,

26
%

fo
r 

IT
C

)

62
 N

1m
i o

r 
IT

C
 (

10
; 1

6%
fo

r 
al

l;
7/

25
 (

28
%

) 
fo

r 
N

1m
i >

1
m

m
,

3/
37

 (
8%

) 
fo

r 
N

1m
i ≤

1
m

m
;

9/
31

 (
29

%
) 

fo
r 

in
tr

ap
ar

en
ch

ym
al

N
1m

i a
n

d 
1/

31
 (

3%
) 

fo
r

in
tr

as
in

us
oi

da
l N

1m
i

Fi
nd

in
gs

•
N

o 
n

on
-S

L
N

 m
ac

ro
m

et
as

ta
se

s 
ar

e 
lik

el
y 

if
 t

h
e

ul
tr

as
ou

n
d 

ex
am

in
at

io
n

 o
f 

th
e 

ax
ill

a 
is

 n
eg

at
iv

e
an

d 
th

e 
SL

N
 c

on
ta

in
s 

on
ly

 m
ic

ro
m

et
as

ta
se

s
or

 I
T

C

•
Tu

m
or

 s
iz

e,
 S

L
N

 m
et

as
ta

si
s 

si
ze

, S
L

N
+

ra
ti

o,
ex

tr
ac

ap
su

la
r 

sp
re

ad
 a

re
 p

re
di

ct
or

s 
of

 n
on

-S
L

N
+

•
SL

N
 m

ic
ro

m
et

as
ta

se
s 

de
te

ct
ed

 b
y 

IH
C

 o
n

ly
 a

re
as

so
ci

at
ed

 w
it

h
 a

 lo
w

 r
is

k 
of

 n
on

-S
L

N
+

•
pT

 (
T

1 
vs

 >
2

cm
),

 L
V

I,
 a

n
d 

M
IB

-1
 p

ro
lif

er
at

io
n

in
de

x 
(>

10
%

vs
 <

10
%

) 
ar

e 
fa

ct
or

s 
in

fl
ue

n
ci

n
g

n
on

-S
L

N
+

•
Pa

ti
en

ts
 w

it
h

 m
ic

ro
m

et
as

ta
ti

c 
SL

N
s 

bu
t 

w
it

h
ou

t
LV

I,
 M

IB
1 

in
de

x 
<1

0%
, a

n
d 

T
1 

tu
m

or
s 

ca
n

pr
ob

ab
ly

 a
vo

id
 A

L
N

D

•
A

L
N

D
 is

 n
ot

 s
up

po
rt

ed
 f

or
 I

T
C

 in
vo

lv
ed

 S
L

N
s

•
SL

N
 m

et
as

ta
si

s 
si

ze
 (

m
ic

ro
/I

T
C

 v
s 

m
ac

ro
),

 
po

si
ti

ve
 S

L
N

 r
at

io
 a

re
 t

h
e 

on
ly

 f
ac

to
rs

as
so

ci
at

ed
 w

it
h

 n
on

-S
L

N
+

•
H

ig
h

 r
is

k 
of

 r
es

id
ua

l d
is

ea
se

 if
 A

L
N

D
 is

 n
ot

 d
on

e
fo

r 
m

ic
ro

m
et

as
ta

ti
c 

or
 I

T
C

 in
vo

lv
ed

 S
L

N
s

•
B

ot
h

 I
H

C
 o

f 
SL

N
s 

an
d 

A
L

N
D

 f
or

 S
L

N
s

po
si

ti
ve

 w
it

h
 I

H
C

 o
n

ly
 a

re
 ju

st
if

ie
d

•
O

n
ly

 L
V

I 
as

so
ci

at
ed

 w
it

h
 n

on
-S

L
N

+
•

A
L

N
D

 is
 in

di
ca

te
d 

fo
r 

m
in

im
al

 S
L

N
in

vo
lv

em
en

t 
to

o

•
M

ic
ro

m
et

as
ta

se
s 

ar
e 

le
ss

 li
ke

ly
 t

o 
be

 a
ss

oc
ia

te
d

w
it

h
 n

on
-S

L
N

 in
vo

lv
em

en
t 

th
an

 m
ac

ro
m

et
as

ta
se

s.

Pa
th

ol
og

y 
of

 S
L

N
s;

 c
om

m
en

ts

H
E

 S
S

+
IH

C
; N

1m
i a

n
d 

IT
C

 c
on

si
de

re
d 

as
 s

ep
ar

at
e

ca
te

go
ri

es

H
E

 S
S 

at
 5

0–
10

0 
or

 2
50

μm
+

m
ul

ti
pl

e 
IH

C
; N

1m
i a

n
d

IT
C

 c
on

si
de

re
d 

as
 s

ep
ar

at
e 

ca
te

go
ri

es

SS
(H

E
)+

IH
C

; N
1m

i a
n

d 
IT

C
 c

on
si

de
re

d 
as

 o
n

e 
ca

te
go

ry
,

di
vi

de
d 

by
 m

et
h

od
 o

f d
et

ec
tio

n
; o

ve
rl

ap
 w

ith
 J

ak
ub

et
 a

l10
7

H
E

 S
S

+
IH

C
; I

T
C

s 
n

ot
 in

cl
ud

ed
 in

 t
h

e 
SL

N
-p

os
it

iv
e

gr
ou

p

4–
6 

H
E

+
2I

H
C

; o
ve

rl
ap

 w
it

h
 T

ur
n

er
 e

t 
al

11
2

5H
E

 a
n

d 
2I

H
C

/S
L

N
; N

1m
i a

n
d 

IT
C

 c
on

si
de

re
d 

as
 s

ep
a-

ra
te

 c
at

eg
or

ie
s

H
E

+
IH

C
/2

–3
m

m
 s

lic
e;

 N
1m

i a
n

d 
IT

C
 n

ot
di

st
in

gu
is

h
ed

, p
ro

ba
bl

y 
m

ai
n

ly
 I

T
C

s 
co

n
si

de
re

d;
 o

ve
rl

ap
w

it
h

 K
am

at
h

 e
t 

al
10

3

H
E

+
IH

C
/1

–2
m

m
 s

lic
e 

(l
at

er
 c

as
es

 a
ls

o 
st

ep
 s

ec
ti

on
ed

at
 0

.5
 o

r 
0.

2
m

m
);

 N
1m

i a
n

d 
IT

C
 c

on
si

de
re

d 
as

 s
ep

ar
at

e
ca

te
go

ri
es

H
E

 S
S 

on
 F

S,
 n

o 
IH

C
; N

1m
i a

n
d 

IT
C

 c
on

si
de

re
d 

as
 o

n
e

ca
te

go
ry

(C
on

tin
ue

d)

Walker-8050-06:Walker-8050-06.qxp 5/30/2008 6:31 PM Page 79



80 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER

T
ab

le
 6

.2
(C

on
ti

n
ue

d)

Fi
rs

t a
ut

ho
r

M
ig

n
ot

te
11

0

L
ei

de
n

iu
s11

1

Tu
rn

er
11

2

W
ei

se
r11

3

V
ia

le
11

4

Sc
h

re
n

k11
5

H
ou

ve
n

ae
gh

el
11

6

N
um

be
r 

of
 p

at
ie

nt
s 

w
ith

 s
m

al
l

m
et

as
ta

se
s 

(n
on

-S
L

N
+;

 %
)

68
 N

1m
i o

r 
IT

C
 (

15
; 2

2%
);

 4
4

on
ly

 I
H

C
-p

os
it

iv
e 

(7
; 1

6%
)

84
 N

1m
i (

22
; 2

6%
fo

r 
al

l, 
37

%
fo

r
N

1m
i>

1
m

m
, 2

1%
fo

r 
bo

th
N

1m
i<

1
m

m
 a

n
d 

IT
C

)

89
 N

1m
i o

r 
IT

C
 (

9;
 1

0%
);

 {2
0;

22
%

};*
 3

9 
on

ly
 I

H
C

-p
os

it
iv

e
(5

; 1
3%

);
 {1

0;
 2

6%
}*

93
 N

1m
i o

r 
IT

C
 (

17
; 1

8%
)

10
9 

N
1m

i (
24

; 2
2%

fo
r 

al
l; 

12
/3

3
(3

6%
) 

fo
r 

pN
1m

i >
1

m
m

, 1
2/

77
(1

6%
)o

r 
pN

1m
i ≤

1
m

m
)

12
2 

N
1m

i o
r 

IT
C

 (
22

; 1
8%

fo
r 

al
l;

18
/7

8 
(2

3%
) 

fo
r 

pN
1m

i, 
4/

44
(9

%
) 

fo
r 

pN
0(

i+
)

70
0 

N
1m

i o
r 

IT
C

 (
94

; 1
3%

)

Fi
nd

in
gs

•
N

o 
su

bs
et

 w
it

h
 v

er
y 

lo
w

 r
is

k 
of

 n
on

-S
L

N
+

co
ul

d 
be

 id
en

ti
fi

ed

•
R

at
io

 o
f 

po
si

ti
ve

 S
L

N
s 

≤0
.2

 m
ak

es
 t

h
e 

ri
sk

 o
f

n
on

-S
L

N
+

n
eg

lig
ib

le
•

H
ig

h
 o

ve
ra

ll 
ri

sk
 o

f 
re

si
du

al
 d

is
ea

se
 in

 t
h

e 
ax

ill
a

if
 n

o 
co

m
pl

et
io

n
 A

L
N

D
 is

 d
on

e 
fo

r
m

ic
ro

m
et

as
ta

ti
c 

SL
N

s

•
SL

N
 m

et
as

ta
si

s 
si

ze
 (

m
ic

ro
/I

T
C

 v
s 

m
ac

ro
),

pT
 (

pT
1a

-b
 v

s 
>1

cm
) 

an
d 

LV
I 

ar
e 

th
e

in
de

pe
n

de
n

t 
fa

ct
or

s 
in

fl
ue

n
ci

n
g 

n
on

-S
L

N
+

•
M

ic
ro

m
et

as
ta

ti
c 

T
1–

2 
tu

m
or

s 
w

it
h

ou
t 

LV
I,

h
ila

r 
ex

tr
ac

ap
su

la
r 

n
od

al
 s

pr
ea

d 
h

av
e 

lo
w

 r
is

k 
of

n
on

-S
L

N
+

•
SL

N
 m

et
as

ta
si

s 
si

ze
 (

m
ic

ro
/I

T
C

 v
s 

m
ac

ro
),

 p
T

(p
T

1a
–b

 v
s 

>1
cm

) 
an

d 
LV

I 
ar

e 
th

e 
in

de
pe

n
de

n
t 

fa
ct

or
s 

in
fl

ue
n

ci
n

g 
n

on
-S

L
N

+
•

M
ic

ro
m

et
as

ta
ti

c 
T

1a
–b

 t
um

or
s 

w
it

h
ou

t 
LV

I,
h

av
e 

lo
w

 r
is

k 
of

 n
on

-S
L

N
+

•
O

m
is

si
on

 o
f 

A
L

N
D

 m
ay

 b
e 

co
n

si
de

re
d 

fo
r

m
ic

ro
m

et
as

ta
se

s 
≤1

m
m

•
Si

ze
 o

f 
pN

1m
i a

n
d 

LV
I 

si
gn

if
ic

an
tl

y 
as

so
ci

at
ed

w
it

h
 n

on
-S

L
N

+

•
pT

, d
et

ec
ti

on
 m

et
h

od
 (

IH
C

 v
s 

H
E

),
 L

V
I 

ar
e

fa
ct

or
s 

in
fl

ue
n

ci
n

g 
n

on
-S

L
N

+
•

pT
1a

–b
 a

n
d 

 s
om

e 
sp

ec
ia

l t
yp

e 
pT

1a
–b

–c
  c

an
ce

rs
h

av
e 

lo
w

 r
is

k 
of

 n
on

-S
L

N
+

Pa
th

ol
og

y 
of

 S
L

N
s;

 c
om

m
en

ts

SS
 a

t 
1–

2
m

m
 (

H
E

)
+

6 
IH

C
; N

1m
i a

n
d 

IT
C

 c
on

si
de

re
d

as
 o

n
e 

ca
te

go
ry

, d
iv

id
ed

 b
y 

m
et

h
od

 o
f 

de
te

ct
io

n
; o

ve
rl

ap
w

it
h

 H
ou

ve
n

ae
gh

el
 e

t 
al

 11
6

FS
+

2H
E

+
IH

C
/1

–1
.5

m
m

 s
lic

e;
 I

T
C

 n
ot

 m
en

ti
on

ed
,

N
1m

i a
n

d 
IT

C
 p

ro
ba

bl
y 

co
n

si
de

re
d 

as
 o

n
e 

ca
te

go
ry

4–
6H

E
+

2I
H

C
; *

 o
ve

ra
lp

 w
it

h
 C

al
h

ou
n

et
 a

l10
5

FS
+

SS
+

IH
C

; N
1m

i a
n

d 
IT

C
 c

on
si

de
re

d 
as

 o
n

e 
ca

te
go

ry

H
E

 S
S 

on
 F

S
+

IH
C

; N
1m

i a
n

d 
IT

C
 c

on
si

de
re

d 
as

 o
n

e
ca

te
go

ry

SS
 a

t 
25

0
μm

+
IH

C
; N

1m
i a

n
d 

IT
C

 c
on

si
de

re
d 

as
se

pa
ra

te
 c

at
eg

or
ie

s

H
E

+
IH

C
; N

1m
i a

n
d 

IT
C

 c
on

si
de

re
d 

as
 s

ep
ar

at
e

ca
te

go
ri

es

A
L

N
D

, A
xi

lla
ry

 ly
m

ph
 n

od
e 

di
ss

ec
ti

on
; F

S,
 f

ro
ze

n
 s

ec
ti

on
s;

 H
E

, h
em

at
ox

yl
in

 a
n

d 
eo

si
n

; I
H

C
, i

m
m

un
oh

is
to

ch
em

is
tr

y;
 I

T
C

, i
so

la
te

d 
tu

m
or

 c
el

ls
; L

V
I,

 ly
m

ph
ov

as
cu

la
r 

in
va

-
si

on
; n

on
-S

L
N

+,
 p

os
it

iv
e 

n
on

se
n

ti
n

el
 ly

m
ph

 n
od

e(
s)

; p
N

1m
i: 

m
ic

ro
m

et
as

ta
si

s 
(≤

2
m

m
, u

n
le

ss
 o

th
er

w
is

e 
st

at
ed

);
 (

p)
T,

 t
um

or
 s

iz
e 

as
 r

ef
le

ct
ed

 b
y 

th
e 

T
 o

r 
 p

T
 c

at
eg

or
ie

s 
of

th
e 

T
N

M
 c

la
ss

if
ic

at
io

n
; S

L
N

, s
en

ti
n

el
 ly

m
ph

 n
od

e;
 S

L
N

B
, s

en
ti

n
el

 ly
m

ph
 n

od
e 

bi
op

sy
; (

sn
),

 s
ym

bo
l f

or
 n

od
al

 s
ta

tu
s 

es
ta

bl
is

h
ed

 o
n

 th
e 

ba
si

s 
of

 S
L

N
B

 w
it

h
ou

t a
xi

lla
ry

 c
le

ar
-

an
ce

; S
S,

 m
ul

ti
pl

e 
le

ve
l a

ss
es

sm
en

t b
y 

se
ri

al
 s

ec
ti

on
in

g 
or

 s
te

p 
se

ct
io

n
in

g;
 *

, (
re

su
lt

s 
ga

in
ed

 w
h

en
) 

n
on

-S
L

N
 a

ls
o 

as
se

ss
ed

 w
it

h
 e

n
h

an
ce

d 
h

is
to

pa
th

ol
og

y;
 T

N
M

, t
um

or
 n

od
e

m
et

as
ta

si
s 

cl
as

si
fi

ca
ti

on
 o

f 
m

al
ig

n
an

t 
tu

m
or

s.
*R

es
ul

ts
 g

ai
n

ed
 w

h
en

 n
on

se
n

ti
n

al
 ly

m
ph

 n
od

es
 w

er
e 

al
so

 a
ss

es
se

d 
w

it
h

 e
n

h
an

ce
d 

h
is

to
pa

th
ol

og
y.

Walker-8050-06:Walker-8050-06.qxp 5/30/2008 6:31 PM Page 80



poorly.127–129 It has also been found that the
MSKCC nomogram is unreliable when SLNs
are only micrometastatic.130 Interestingly, sev-
eral of the mentioned predictive tools do not
include the size of the SLN metastasis as a vari-
able.122,125 The Louisville clinical prediction
rule uses only factors which can be available
during the SLNB procedure itself, to allow
an intraoperative decision,125 whereas the
MSKCC nomogram reflects metastasis size
only by its detection method (frozen section
vs serial HE vs IHC).122

Many publications have documented that
extracapsular spread of the SLN metastasis is
a factor associated with increased risk of non-
SLN involvement.99,102,112,131,132 Although this
phenomenon is perceived as a sign of nodal
obliteration,133 and therefore massive involve-
ment, some micrometastases also show this
feature,134 especially in tumors with tubular
histology (Figure 6.4). In such instances, the
presence of extracapsular extension may be
less associated with non-SLN metastases than
in general.121,134

CONCLUSIONS

Nodal micrometastases represent low-volume
lymph node involvement, which using the
most common current definitions are arbitrar-
ily separated from even lesser nodal involve-
ment termed ITCs. Reports are contradictory

on the prognostic impact of micrometastases,
but it seems that larger series and longer fol-
low-up are likely to document some prognostic
disadvantage for patients with micrometastatic
breast cancers as compared to their node-
negative counterparts. It is also likely that the
volume of the nodal metastatic load is impor-
tant and that larger micrometastases convey a
somewhat worse prognosis than smaller ones.
With the introduction of SLNB in the axillary
staging of breast carcinoma, micrometastases
are more commonly found and this gives an
opportunity to study their prognostic impact.
Some recent studies have already documented
survival disadvantages even with ITCs. SLNB
also offers a tool for the selective treatment of
the axilla. While it is largely accepted that SLN-
negative patients do not require further axil-
lary treatment, the therapeutic consequences
of finding ITCs and micrometastases in the
axillary SLNs are controversial and under
intensive investigation. It is likely that the pres-
ence of ITCs does not mandate further axillary
intervention and a large majority of patients
with micrometastatic SLNs will also fall into
this category. At least a number of them may
be predictable with reasonable accuracy on
the basis of clinical and pathological findings.
However, care should be taken when inter-
preting results relating to micrometastases and
ITC. The methods of lymph node evaluation
are different from institution to institution,11

and a less detailed histological assessment may
not only result in more metastases remaining
occult but may also underestimate the size of
a metastasis by labeling larger metastases as
micrometastasis. The distinction between micro -
metastases and ITCs is also suboptimal18–20 (R
Turner, personal communication) and this
may also somewhat bias the results.

Whether one should look for micrometa  -
stases or ITCs is dependent on several factors,
including the resources available. Although it
was previously acknowledged that micrometa -
stases might be of prognostic value, it has been
suggested that their impact is not a major one.
Also the importance of nodal status in deter-
mining systemic treatment has changed.84,85

These factors could be taken as being against

SENTINEL NODES, MICROMETASTASES AND ISOLATED TUMOR CELLS   81

Figure 6.4 Extracapsular extension of a nodal micrometa -
stasis from a tubulolobular carcinoma.
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the need to search for micrometastases. On
the other hand, there is evidence that
micrometastases are associated with an overall
risk of non-SLN metastasis in the range of 10–
15%, and therefore further axillary treatment
may be indicated in every seventh to tenth
patient harboring micrometastasis in her/his
axillary SLN. This may be interpreted as an
argument in favor of looking for micrometa -
stases. Taking into account other factors that
bear on the risk of non-SLN positivity, such as
a low ratio of involved/removed SLNs, small
tumor size and the lack of LVI, the risk of hav-
ing non-SLN involvement may be so minimal
that looking for micrometastases is not worth-
while. Removing a micrometastatic SLN and
not identifying the micrometastasis in it is
probably acceptable in most cases where the
predictive profile of non-SLN involvement is
otherwise favorable.135 In contrast, with an
unfavorable predictive profile, the risk of non-
SLN involvement associated with micrometa -
stases may be >15%, and this is an important
point to make. 

Therefore, searching for micrometastases
should be weighed against several factors, such
as the patient perception of an acceptable risk
of having axillary residual disease, other fac-
tors influencing the risk of non-SLN positivity,
and available resources. The European guide-
lines relating to the histopathological assess-
ment of SLNs require all macrometastases to
be identified in SLNs, and suggest that the
identification of all micrometastases would be
optimal.136 The first approach would be met by
assessing levels separated by 1 mm, whereas
the other would require step sectioning at
150–250 μm.136,137 According to these guide-
lines, IHC is not mandatory in the evaluation
of SLNs, but it is also not discouraged as it can
make the recognition of micrometastases
easier.136 The guidelines of the German Senologic
Society seem a reasonable compromise
between these two options of nodal examina-
tion by advocating the examination of the
whole SLN at levels separated by 500 μm.138

Adherence to guidelines recommending a
consistent and systematic examination of the
SLNs can make the accuracy of nodal staging

(and the rate of missed occult metastases)
comparable between laboratories and the ther-
apy-related recommendations more uniform.
In contrast, lack of a systematic sampling will
fail to give similar levels of accuracy as it will
allow metastases of different sizes (depending
on the thickness of the tissue block left unsam-
pled) to remain occult.

Concerning the identification of ITCs, no
histopathological protocol, other than the
IHC-aided investigation of the whole SLN at
steps not larger than the smallest dimension of
the actual tumor cell, would be able to exclude
nodal involvement by such a low tumor vol-
ume, and this is well over the acceptable com-
promise any laboratory can make.139,140 As a
consequence, it should be remembered that
the pN0(i+) symbol reflects the identification
of ITCs within a lymph node, but the failure to
identify, i.e. the pN0(i−), does not necessarily
mean that the lymph node does not harbor
such a small volume of secondary tumor.47,140

Depending on the size of the metastasis which
the histological protocol targets, and the pro-
tocol itself, a similar statement can also be made
for micrometastases. Since no histopathological
protocol can aim at identifying all ITCs, it may
be envisaged that molecular methods would
be a better approach. However, RT-PCR assays,
although very sensitive, fail to be specific
enough20,29 and are not recommended for rou-
tine practice.30,136 It can therefore be con-
cluded that the prognostic and predictive
impact of ITCs is at most controversial and
obscured by interpretation problems. As a con-
sequence, it is not recommended to search for
ITCs, but it is recommended to report them
whenever they are found. Although not sup-
ported by all publications (see Tables 6.1 and
6.2), at present, ignoring ITCs for therapeutic
planning is a reasonable approach, and
reflects published guidelines and consensus
statements.5,6,13,30,136

To avoid confusion of the data for prospec-
tive analysis (and also for decisions stemming
from the pathological findings), whenever
micrometastases or ITCs are found in a lymph
node, care should be taken to exclude larger
size nodal involvement by examining deeper
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layers of the tissue block. Reporting the great-
est dimension of the largest metastasis is an
advisable, reasonable and practical approach
to estimate the metastatic volume. Such an
approach will hopefully help in clarifying the
predictive and prognostic impact of low-volume
nodal involvement, which is somewhat obscured
by the diversity of the available data.
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INTRODUCTION

Metastasis is the main cause of breast cancer-
related death. Early tumor cell dissemination
occurs even in patients with early breast cancer,
and bone marrow (BM) is a common homing
organ for blood-borne disseminated tumor cells
(DTC) derived from primary breast carcino-
mas. However, this early spread usually remains
undetected even by high-resolution imaging
technologies. Sensitive immunocytochemical and
molecular assays allow specific detection of
“occult” metastatic tumor cells at the single-cell
stage, and the detection of systemic tumor cell
dissemination in the peripheral blood and BM
before the occurrence of incurable overt meta -
stases. Evidence has emerged that the detection
of DTC and circulating tumor cells (CTC) may
provide important prognostic information, and
in addition might help to monitor efficacy of
therapy. Many studies have been also published
on the detection of DTC in lymph nodes (see
Chapter 6).1–3 This chapter will focus on the
detection, biology and clinical relevance of
hematogeneous tumor cell spread, since this
seems to be the most crucial step in breast can-
cer progression. 

METHODS FOR THE DETECTION 
OF DISSEMINATED TUMOR CELLS 

Immunocytochemical staining 

Several different assays have been developed to
detect DTC in breast cancer and other types of
carcinomas. One major approach to identify
DTC is immunocytochemical staining with
monoclonal antibodies against epithelial or

tumor-associated antigens.4–7 To date, cytokera -
tins have become the most widely accepted
protein markers for the detection of epithelial
tumor cells in mesenchymal tissues such as BM,
blood or lymph nodes.8–10 However, different
staining techniques can result in specificity vari-
ations.11,12 Several international organizations
have therefore recognized the need for stand -
ardization of the immunocytochemical assay
and for its evaluation in prospective studies
(see www.dismal-project.eu).13,14

Immunocytochemical analysis is usually
used in combination with density gradient
centrifugation, immunomagnetic procedures
or size filtration methods to enrich tumor
cells prior to their detection.15–18 One way to
improve current detection assays for single
tumor cells is to develop better tumor cell
enrichment procedures using improved den-
sity gradients19 and antibody-coupled mag-
netic particles.20–22 At present, it is unclear
whether these new enrichment techniques
provide more clinically relevant information
than the standard density gradient procedure
used to isolate the mononuclear cell fraction
(Figure 7.1). 

The use of new automated devices for
microscopic screening of immunostained
slides may help slides to be read more rapidly
and increase reproducibility of the read-out
(Figure 7.1).20,23–27 Among the commercially
available automated systems, the CellSearchTM

system has gained considerable attention
because it allows an automated immunomag-
netic enrichment and cytokeratin staining of
blood samples.28 A recent validation study
demonstrated the reproducibility indicating

Detection of minimal residual disease
in predicting outcome
Volkmar Müller, Catherine Alix-Panabières and Klaus Pantel
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that multicenter studies with shipment of
samples are possible.29

Polymerase chain reaction approach 
for the detection of disseminated
tumor cells

A widely used alternative to immunocyto-
chemical assays for the detection of DTC
became molecular detection procedures. In
principle, the nucleic acid in a sample can be
amplified by polymerase chain reaction
(PCR) so that very small numbers of tumor
cells can be detected in a heterogeneous
population of cells. However, the tumor
cells must have changes in DNA or mRNA
expression patterns which distinguish them
from the surrounding hematopoetic cells. At
the DNA level, breast carcinomas are geneti-
cally quite heterogeneous, so that there is no
universally applicable DNA marker available.
Therefore, the main approach to develop
molecular diagnostic assays for breast carcino-
mas has focused on RNA markers. A multi-
marker approach with a panel of tumor-specific
mRNA markers may improve the sensitivity

for the detection of DTC over single marker
assays.30,31

Up to date, many transcripts have been eval-
uated as “tumor-specific” markers such as
cytokeratins (CK) CK18, CK19 and CK20,
mucin-1 (MUC1), and carcinoembryonic anti-
gen.32 However, many of these transcripts can
also be identified by reverse transcription
(RT)-PCR in normal BM, blood, and lymph
node tissue.33–35 Preanalytical depletion of the
interfering normal cell fraction (e.g. granulo-
cytes which express CK20) and/or quantita-
tive RT-PCR determinations with well-defined
cut-off values might solve this problem. In
addition, expression of the mRNA marker
might be downregulated, which argues in
favor of the use of a multimarker RT-PCR
approach.36

Enzyme-linked immunospot technology 

A drawback of both immunocytochemistry
and RT-PCR is the fact that these technologies
are usually unable to distinguish between
viable and apoptotic cells. Recently, a new
technique which allows this important

BM aspirates taken
from the upper iliac

crest

Immunocytochemistry:
CK staining with
monoclonal antibodies

Automated
screening
for DTC

2 × 106 MNC
per patient

BM

Ficoll

Ficoll
gradient

MNC

Figure 7.1 Immunocytochemical detection of disseminated tumor cells (DTC) in the bone marrow (BM) of patients
with epithelial tumors. The detection process begins with Ficoll density gradient centrifugation to isolate mononuclear
cells (MNC) and uses cytokeratin (CK) antibodies. The detection of the stained DTC can be performed automatically
and suspect cells are displayed in an image gallery. 
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discrimination was introduced for DTC/CTC
analyses.37 This technique was designated
epithelial immunospot (EPISPOT) and is
based on the secretion or active release of spe-
cific marker proteins using an adaptation of
the enzyme-linked immunospot (ELISPOT)
technology (Figure 7.2). The EPISPOT assay
offers the advantage that only viable tumor
cells will be detected and that protein secre-
tion can be detected at an individual cell
level.38 For the detection of breast cancer-
derived DTC/CTC, MUC1 and CK19 were
used as marker proteins.39 MUC1-secreting
CTC were detected in all metastatic breast
cancer patients analyzed, whereas such cells
were not observed in healthy controls. Moreover,
the enumeration of both MUC1- and CK19-
secreting cells allowed the detection of viable
DTC in BM of 90% and 54% of breast cancer
patients, with and without overt distant meta -
stasis, respectively.39

These data demonstrate the high specificity
and sensitivity of the new EPISPOT technol-
ogy, which reveals a unique fingerprint of sin-
gle viable tumor cells and therefore opens a
new avenue in the understanding of the biol-
ogy of early metastatic spread. 

MOLECULAR AND FUNCTIONAL
CHARACTERIZATION 
OF DISSEMINATED TUMOR CELLS

DTC in BM of breast cancer patients have
been characterized with immunological

double staining to identify biological features
which might favor early dissemination. Multiple
characterization approaches of DTC in BM
show a considerable phenotypic heterogeneity;
in particular, the human epidermal growth fac-
tor receptor 2 (HER2) proto-oncogene appears
to define a very aggressive subset of DTC with
an increased invasive capability40,41 and has
gained substantial importance as a biological
target for systemic therapy in breast cancer.42

It can be demonstrated that the presence of
HER2 expressing DTC is also associated with
impaired prognosis.43 Furthermore, there is
also some evidence of a prognostic effect of
HER2-positive CTCs in stage I–III breast can-
cer.44 In addition, most DTC and CTC do not
express the proliferation antigen Ki67 and may
therefore be resistant to chemotherapy.45,46

A detailed molecular description of DTC in
BM of breast cancer patients without clinical
signs of overt metastases demonstrated that
these cells are genetically heterogeneous47 and
lack genomic aberrations observed in arbitrary
selected areas of the primary tumors.48 Thus,
DTC may be derived from small subclones
within the primary tumor which can be easily
missed and/or they may undergo genetic
changes after their homing in the BM.

By applying gene expression analysis of pri-
mary breast cancers in relation to the presence
or absence of DTC in BM, specific gene signa-
tures in primary tumors of patients with DTC in
BM were observed.49 These findings challenge
the traditional concept that tumor cells acquire

Coating anti-MUC1 Abs

MUC1-releasing breast tumor cells

Immunocaptured MUC1

Fluorescent anti-MUC1 Abs

Cell culture at 37°C

Elimination of cells

Revelation step: addition of 
conjugated anti-MUC1 Abs

Immunospots are the MUC1 fingerprints
left only by viable releasing tumor cells

Figure 7.2 Description of the mucin-I
(MUC1)-epithelial immunospot (EPIS-
POT) assay. Plates are coated with anti-
MUC1 antibodies (Abs). Next, the cells are
seeded in each well and cultured for 48
hours. During this incubation period, the
released MUC1 molecules are directly
immunocaptured by the Abs on the bottom
of the well. The cells are then eliminated
and the presence of the released MUC1
protein is revealed by the addition of a sec-
ond anti-MUC1 antibody conjugated to a
fluorochrome.
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their metastatic genotype and phenotype late
during tumor development, but rather support
the alternative concept that tumor cells acquire
the genetic changes relevant to their metastatic
capacity early in tumorigenesis,50 so that the
metastatic potential of human tumors is encoded
in the bulk of a primary tumor.50,51 This concept
could also explain the presence of DTC in BM
at early stages of breast cancer.

Numerous studies have shown that BM is a
common homing organ for disseminating
tumor cells derived from various epithelial
tumors, including breast, prostate, lung and
colon cancer.15,52 The properties of primary
tumor cells to disseminate to BM are still
under investigation and some mechanisms
like adhesion molecules or hypoxia have been
suggested.49,53–55

BIOLOGY OF MINIMAL RESIDUAL
DISEASE

Only half of the breast cancer patients with
DTC relapse, whereas the other half remain
free of overt metastasis over a 10-year follow-
up period (Table 7.1).56 This finding is in line
with data from animal models and suggests
that a significant fraction of DTC might never
develop into overt metastases but might
remain in a “dormant” state. However, the
persistence of DTC in BM even years after

primary treatment is linked to an increased
risk of late metastatic relapses in breast can-
cer.57 Thus far, little is known about the con-
ditions required for the escape from the
dormant or quiescent phase into the dynamic
phase of metastasis formation. The steady-
state regulating dormancy might be disturbed
by both changes in the DTC (e.g. additional
mutations) and the surrounding microenvi-
ronment (e.g. decrease in immune surveillance
or increased angiogenetic potential).58–60

Among the protein characteristics, expression
of the tyrosine kinase receptor HER2 on DTC
and CTC appears to be linked to metastatic
relapse.44,61 Thus, HER2-mediated signaling
might be important for the transition of DTC
from a dormant to an active growth stage. 

Recently, the search for breast cancer stem
cells has gained increasing attention with the
discovery of new stem cell markers and signa-
tures.39,62–64 It is assumed that breast cancer
stem cells especially can disseminate from the
primary tumor to distant sites. The significant
correlation between the presence of DTC in
BM and metastatic relapse64 suggests that the
founder cells of overt metastases might be
among those DTC as metastatic stem cells.
Furthermore, most DTC/CTC are nonprolif-
erating (i.e. Ki-67-negative) and resistant to
chemotherapy,46,65,66 as postulated for cancer
stem cells. Moreover, many DTC have a

Table 7.1 Examples of studies examining prognostic relevance of disseminated tumor cells identified by immuno -
cytochemistry in bone marrow of breast cancer patients without overt distant metastases (stage M0)

Prognostic value 
First author (year) Detection rate (%) (number of patients)

Schlimok85 (1987) 18 DDFS (155)
Cote86 (1991) 37 DFS, OS* (49)
Harbeck87 (1994) 38 DFS, OS*  (100)
Diel88 (1996) 31 DFS,* OS (727)
Molino89 (1997) 31 None (109)
Mansi90 (1999) 25 DFS, OS (350)
Braun10 (2000) 36 DFS,* OS * (552)
Gebauer4 (2001) 42 DFS,* OS * (393)
Gerber6 (2001) 31 DFS,* OS * (484)
Wiedswang21 (2003) 13 DDFS,* BCSS * (817)
Braun56 (2005): pooled analysis 31 DDFS,* OS* (4703)

*Confirmed by multivariate analysis.
BCSS, breast cancer-specific survival; DDFS, distant-DFS; DFS, disease-free survival; OS, overall survival.
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CD44+CD24−/low breast cancer stem cell phe-
notype,67,68 and a subpopulation of viable DTC
are CK19+MUC1−, also previously suggested as
a breast stem cell phenotype.39 More recently,
EpCAM has been identified as a new breast
cancer stem cell marker,64 and this adhesion
molecule is expressed on more than 60% of
DTC in BM of breast cancer patients.52

CLINICAL RELEVANCE OF
DISSEMINATED TUMOR CELLS
AND CIRCULATING TUMOR CELLS
FOR PREDICTING OUTCOME 
AND MONITORING THERAPY

The prognostic impact of DTC analysis per-
formed at the time of primary surgery was
confirmed in a large recent pooled analysis
including 4703 patients with a 10-year follow-
up.56 In addition to their use as prognostic
factor in breast cancer, monitoring of BM
postsurgery (i.e. during and after systemic
adjuvant therapy) might be able to provide a
unique information for the clinical manage-
ment of the individual cancer patient (Table
7.1).57,65,66,69,70 The identification of patients at
increased risk for recurrence after completion
of adjuvant chemotherapy is an application of
high clinical relevance, since these patients
might benefit from an additional “second-
line” treatment, e.g. bisphosphonates or tar-
geted therapies like anti-HER2 approaches or
antiangiogenetic drugs.

Sequential peripheral blood analyses should
be more acceptable than BM aspirations and
many research groups are currently assessing
CTC in clinical studies. Depending on the
detection technique used, CTC were revealed
in 50–100% of patients with metastatic breast
cancer.15 However, even in patients with no
clinical signs of overt metastases, detection
rates range from 10% to 60%.71 In contrast to
one report that suggested that CTC are mostly
apoptotic,72 we have recently shown that viable
CTC were frequently present both in patients
with early and late stage breast cancer.39

The clinical relevance of CTC measure-
ments is still under investigation. Detection of
CTC with the CellSearchTM system provided

significant prognostic information before
and also early (4 weeks) after initiation of
chemotherapy in patients with measurable
metastatic breast cancer,28 and the prognostic
impact of increased CTC numbers was also
maintained when repeated examinations dur-
ing follow-up were performed.73 Interestingly,
CTC determinations seem to be superior over
conventional imaging methods for response
evaluation.74 In contrast to patients with
metastatic disease, the prognostic relevance of
CTC in the blood of patients with early-stage
disease without overt metastasis is still under
investigation and needs to be demonstrated in
prospective multicenter studies.75 In patients
with primary breast cancer, several studies
have used RT-PCR based methods and showed
a prognostic impact.76–78

To date, it is not clear if CTC measurements
could replace the examination of BM. Previously,
two immunocytochemical studies demon-
strated statistically significant correlations
between DTC detection in BM and blood, but
BM was more frequently positive than
blood.46,79 One possible explanation is that BM
is a homing organ for DTC, whereas blood
analyses allow only a “snapshot” of tumor cell
dissemination. Recently, it was also described
that detection of DTC in BM had superior
prognostic significance in comparison with
CTC measurements in blood, analyzing
patients with metastatic and nonmetastatic
breast cancer by a quantitative RT-PCR assay
for CK19 and mammaglobin mRNAs.80 In line
with this, another report using immunocyto-
chemistry showed that only BM but not blood
analyses provided prognostic information.81

Currently, these findings do not support an
exchange of DTC in BM with CTC from blood,
but future studies with improved detection
technologies may help to clarify this issue.

IDENTIFICATION OF
THERAPEUTIC TARGETS ON
DISSEMINATED TUMOR CELLS AND
CIRCULATING TUMOR CELLS

A striking potential of DTC/CTC could also
be to identify therapeutic targets on these
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cells, which might enable a more individual
antimetastatic therapy in cancer patients.
CTC/DTC can show properties distinct from
the primary tumor and the characterization of
these cells could therefore help to select can-
cer patients for targeted therapies. 

In particular, the HER2 oncogene has
become the most prominent target for biologi-
cal therapies in breast cancer and a humanized
anti-HER2 monoclonal antibody (trastuzumab)
was recently approved by the FDA.42,82 Currently,
all patients are stratified to this targeted therapy
by primary tumor analysis only. However, recent
reports have shown that HER2-positive DTC
and CTC can also be detected in patients with
HER2-negative primary tumors.44,83,84 These
findings are consistent with our previous data
on the high frequency and prognostic rele-
vance of HER2 expression on DTC in BM43 and
they suggest that additional patients who could
benefit from HER2-directed therapies.83

Ongoing clinical studies will reveal whether the
HER2 status of DTC or CTC may predict
response to trastuzumab or other HER2-
directed therapies. 

CONCLUSIONS

Recently reported studies suggest that CTC
levels may serve both as a prognostic marker
and for early assessment of therapeutic
response in patients with metastatic breast
cancer. However, in early stage breast cancer,
the impact of CTC is less well established than
the presence of DTC in BM where several clini -
cal studies demonstrated that such cells are an
independent prognostic factor at primary
diagnosis. 

The characterization of DTC/CTC has shed
new light on the complex process underlying
early tumor cell dissemination and metastatic
progression in cancer patients. Characterization
of DTC should help to identify novel targets for
biological therapies aimed to prevent metastatic
relapse and to monitor the efficacy of these thera-
pies. In addition, understanding tumor “dor-
mancy” and identifying metastatic stem cells might
result in the development of new therapeutic
concepts.

ACKNOWLEDGMENT

This work was supported by grants from the
Ministère de l’Economie des Finances et de
l’Industrie (MINEFI); the University Medical
Center of Montpellier, France; The Deutsche
Forschungsgemeinschaft (PA 341/15-2), Bonn,
Germany; and the European Commission
(DISMAL-project, contract no. LSHC-CT-2005-
018911).

REFERENCES
1. Herbert GS, Sohn VY, Brown TA. The impact of

nodal isolated tumor cells on survival of breast can-
cer patients. Am J Surg 2007; 193(5): 571–3; discus-
sion 3–4.

2. Imoto S, Ochiai A, Okumura C et al. Impact of iso-
lated tumor cells in sentinel lymph nodes detected
by immunohistochemical staining. Eur J Surg Oncol
2006; 32(10): 1175–9.

3. Kahn HJ, Hanna WM, Chapman JA et al. Biological
significance of occult micrometastases in histologi-
cally negative axillary lymph nodes in breast cancer
patients using the recent American Joint Committee
on Cancer breast cancer staging system. Breast J
2006; 12(4): 294–301.

4. Gebauer G, Fehm T, Merkle E et al. Epithelial cells
in bone marrow of breast cancer patients at time of
primary surgery: clinical outcome during long-term
follow-up. J Clin Oncol 2001; 19(16): 3669–74.

5. Landys K, Persson S, Kovarik J et al. Prognostic value
of bone marrow biopsy in operable breast cancer
patients at the time of initial diagnosis: results of a
20-year median follow-up. Breast Cancer Res Treat
1998; 49(1): 27–33.

6. Gerber B, Krause A, Muller H et al. Simultaneous
immunohistochemical detection of tumor cells in
lymph nodes and bone marrow aspirates in breast
cancer and its correlation with other prognostic
factors. J Clin Oncol 2001; 19(4): 960–71.

7. Pierga JY, Bonneton C, Magdelenat H et al. Real-time
quantitative PCR determination of urokinase-type
plasminogen activator receptor (uPAR) expression
of isolated micrometastatic cells from bone marrow
of breast cancer patients. Int J Cancer 2005; 114(2):
291–8.

8. Braun S, Vogl FD, Naume B et al. A pooled analysis
of bone marrow micrometastasis in breast cancer. N
Engl J Med 2005; 353(8): 793–802.

9. Pantel K, Felber E, Schlimok G. Detection and char-
acterization of residual disease in breast cancer.
J Hematother 1994; 3(4): 315–22.

10. Braun S, Pantel K, Muller P et al. Cytokeratin-
positive cells in the bone marrow and survival of
patients with stage I, II, or III breast cancer. N Engl
J Med 2000; 342(8): 525–33.

Walker-8050-07:Walker-8050-07.qxp 5/30/2008 6:34 PM Page 93



94 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER

11. Borgen E, Beiske K, Trachsel S et al. Immunocyto -
chemical detection of isolated epithelial cells in
bone marrow: non-specific staining and contribu-
tion by plasma cells directly reactive to alkaline phos-
phatase. J Pathol 1998; 185(4): 427–34.

12. Braun S, Pantel K. Micrometastatic bone marrow
involvement: detection and prognostic significance.
Med Oncol 1999; 16(3): 154–65.

13. Borgen E, Naume B, Nesland JM et al. Standardization
of the immunocytochemical detection of cancer cells
in BM and blood: I. Establishment of objecive criteria
for the evaluation of immunostained cells. Cytometry
1999; 1(5): 377–88.

14. Fehm T, Braun S, Müller V et al. A concept for the stand -
ardized detection of disseminated tumor cells in bone
marrow of patients with primary breast cancer and its clin-
ical implementation. Cancer 2006; 107(5): 885–92.

15. Zach O, Lutz D. Tumor cell detection in peripheral
blood and bone marrow. Curr Opin Oncol 2006;
18(1): 48–56.

16. Paterlini-Brechot P, Benali NL. Circulating tumor
cells (CTC) detection: clinical impact and future
directions. Cancer Lett 2007; 18(253): 180–204.

17. Pinzani P, Salvadori B, Simi L et al. Isolation by size of
epithelial tumor cells in peripheral blood of patients
with breast cancer: correlation with real-time reverse
transcriptase-polymerase chain reaction results and
feasibility of molecular analysis by laser microdissec-
tion. Hum Pathol 2006; 37(6): 711–18.

18. Wong NS, Kahn HJ, Zhang L et al. Prognostic signifi -
cance of circulating tumour cells enumerated after
filtration enrichment in early and metastatic breast
cancer patients. Breast Cancer Res Treat 2006;
99(1): 63–9.

19. Rosenberg R, Gertler R, Friederichs J et al. Comparison
of two density gradient centrifugation systems for
the enrichment of disseminated tumor cells in
blood. Cytometry 2002; 49(4): 150–8.

20. Witzig TE, Bossy B, Kimlinger T et al. Detection of
circulating cytokeratin-positive cells in the blood of
breast cancer patients using immunomagnetic
enrichment and digital microscopy. Clin Cancer Res
2002; 8(5): 1085–91.

21. Wiedswang G, Borgen E, Karesen R et al. Detection
of isolated tumor cells in bone marrow is an inde-
pendent prognostic factor in breast cancer. J Clin
Oncol 2003; 21(18): 3469–78.

22. Woelfle U, Breit E, Zafrakas K et al. Bi-specific
immunomagnetic enrichment of micrometastatic
tumour cell clusters from bone marrow of cancer
patients. J Immunol Methods 2005; 300(1–2): 136–45.

23. Kraeft SK, Ladanyi A, Galiger K et al. Reliable and
sensitive identification of occult tumor cells using
the improved rare event imaging system. Clin
Cancer Res 2004; 10(9): 3020–8.

24. Borgen E, Naume B, Nesland JM et al. Use of auto-
mated microscopy for the detection of disseminated
tumor cells in bone marrow samples. Cytometry
2001; 46(4): 215–21.

25. Kraeft SK, Sutherland R, Gravelin L et al. Detection
and analysis of cancer cells in blood and bone
marrow using a rare event imaging system. Clin
Cancer Res 2000; 6(2): 434–42.

26. Bauer KD, de la Torre-Bueno J, Diel IJ et al. Reliable
and sensitive analysis of occult bone marrow meta -
stases using automated cellular imaging. Clin
Cancer Res 2000; 6(9): 3552–9.

27. Mehes G, Luegmayr A, Ambros IM et al. Combined
automatic immunological and molecular cytoge-
netic analysis allows exact identification and quan-
tification of tumor cells in the bone marrow. Clin
Cancer Res 2001; 7(7): 1969–75.

28. Cristofanilli M, Budd GT, Ellis MJ et al. Circulating
tumor cells, disease progression, and survival in
metastatic breast cancer. N Engl J Med 2004; 351(8):
781–91.

29. Riethdorf S, Fritsche H, Müller V et al. Detection of
circulating tumor cells in peripheral blood of
patients with metastatic breast cancer: a validation
study of the CellSearch system. Clin Cancer Res
2007; 13(3): 920–8.

30. Symmans WF, Liu J, Knowles DM et al. Breast cancer
heterogeneity: evaluation of clonality in primary and
metastatic lesions. Hum Pathol 1995; 26: 210–16.

31. Braun S, Hepp F, Sommer HL et al. Tumor-antigen
heterogeneity of disseminated breast cancer cells:
implications for immunotherapy of minimal resid-
ual disease. Int J Cancer 1999; 84(1): 1–5.

32. Datta YH, Adams PT, Drobyski WR et al. Sensitive
detection of occult breast cancer by the reverse-
transcriptase polymerase chain reaction. J Clin
Oncol 1994; 12(3): 475–82.

33. Zippelius A, Kufer P, Honold G et al. Limitations of
reverse-transcriptase polymerase chain reaction
analyses for detection of micrometastatic epithelial
cancer cells in bone marrow. J Clin Oncol 1997;
15(7): 2701–8.

34. Bostick PJ, Chatterjee S, Chi DD et al. Limitations of
specific reverse-transcriptase polymerase chain reac-
tion markers in the detection of metastases in the
lymph nodes and blood of breast cancer patients.
J Clin Oncol 1998; 16(8): 2632–40.

35. Jung R, Kruger W, Hosch S et al. Specificity of
reverse transcriptase polymerase chain reaction
assays designed for the detection of circulating can-
cer cells is influenced by cytokines in vivo and in
vitro. Br J Cancer 1998; 78(9): 1194–8.

36. Lankiewicz S, Rivero BG, Bocher O. Quantitative
real-time RT-PCR of disseminated tumor cells in
combination with immunomagnetic cell enrich-
ment. Mol Biotechnol 2006; 34(1): 15–27.

37. Pantel K, Alix-Panabieres C. The clinical significance
of circulating tumor cells. Nat Clin Pract Oncol
2007; 4(2): 62–3.

38. Czerkinsky C, Moldoveanu Z, Mestecky J et al. A
novel two colour ELISPOT assay. I. Simultaneous
detection of distinct types of antibody-secreting
cells. J Immunol Meth 1988; 115(1): 31–7.

Walker-8050-07:Walker-8050-07.qxp 5/30/2008 6:34 PM Page 94



DETECTION OF MINIMAL RESIDUAL DISEASE IN PREDICTING OUTCOME   95

39. Alix-Panabières C, Vendrell J-P, Pellé O et al.
Detection and characterization of putative metasta-
tic precursor cells in cancer patients. Clin Chem
2007; 53(3): 537–9.

40. Brandt B, Roetger A, Heidl S et al. Isolation of blood-
borne epithelium-derived c-erbB-2 oncoprotein-
positive clustered cells from the peripheral blood of
breast cancer patients. Int J Cancer 1998; 76(6):
824–8.

41. Fehm T, Sagalowsky A, Clifford E et al. Cytogenetic
evidence that circulating epithelial cells in patients
with carcinoma are malignant. Clin Cancer Res
2002; 8(7): 2073–84.

42. Piccart-Gebhart MJ, Procter M, Leyland-Jones B
et al. Trastuzumab after adjuvant chemotherapy in
HER2-positive breast cancer. N Engl J Med 2005;
353(16): 1659–72.

43. Braun S, Schlimok G, Heumos I et al. ErbB2 overex-
pression on occult metastatic cells in bone marrow
predicts poor clinical outcome of stage I–III breast
cancer patients. Cancer Res 2001; 61: 1890–5.

44. Wülfing P, Borchard J, Buerger H et al. HER2-posi-
tive circulating tumor cells indicate poor clinical
outcome in stage I to III breast cancer patients. Clin
Cancer Res 2006; 12(6): 1715–20.

45. Pantel K, Schlimok G, Braun S et al. Differential
expression of proliferation-associated molecules in
individual micrometastatic carcinoma cells. J Natl
Cancer Inst 1993; 85(17): 1419–24.

46. Müller V, Stahmann N, Riethdorf S et al. Circulating
tumor cells in breast cancer: correlation to bone
marrow micrometastases, heterogeneous response
to systemic therapy and low proliferative activity.
Clin Cancer Res 2005; 11(10): 3678–85.

47. Klein CA, Blankenstein TJF, Schmidt-Kittler O et al.
Genetic heterogeneity of single disseminated tumour
cells in minimal residual cancer. The Lancet 2002;
360: 683–9.

48. Gangnus R, Langer S, Breit E et al. Genomic profil-
ing of viable and proliferative micrometastatic cells
from early-stage breast cancer patients. Clin Cancer
Res 2004; 10(10): 3457–64.

49. Woelfle U, Cloos J, Sauter G et al. Molecular signa-
ture associated with bone marrow micrometastasis in
human breast cancer. Cancer Res 2003; 63(18):
5679–84.

50. Bernards R, Weinberg RA. A progression puzzle.
Nature 2002; 418: 823.

51. Ramaswamy S, Ross KN, Lander ES et al. A molecu-
lar signature of metastasis in primary solid tumors.
Nat Genet 2003; 33: 1–6.

52. Pantel K, Brakenhoff RH. Dissecting the metastatic
cascade. Nat Rev Cancer 2004; 4: 448–56.

53. Muller A, Homey B, Soto H et al. Involvement of
chemokine receptors in breast cancer metastasis.
Nature 2001; 410(6824): 50–6.

54. Kaifi JT, Yekebas EF, Schurr P et al. Tumor-cell
homing to lymph nodes and bone marrow and

CXCR4 expression in esophageal cancer. J Natl
Cancer Inst 2005; 97(24): 1840–7.

55. Generali D, Berruti A, Brizzi MP et al. Hypoxia-
inducible factor-1alpha expression predicts a poor
response to primary chemoendocrine therapy and
disease-free survival in primary human breast can-
cer. Clin Cancer Res 2006; 12(15): 4562–8.

56. Braun S, Vogl FD, Naume B et al. International pooled
analysis of prognostic significance of bone marrow
micrometastasis in patients with stage I, II, or III breast
cancer. N Engl J Med 2005; 353(8): 793–802.

57. Janni W, Rack B, Schindlbeck C et al. The persistence
of isolated tumor cells in bone marrow from patients
with breast carcinoma predicts an increased risk for
recurrence. Cancer 2005; 103(5): 884–91.

58. Naumov GN, Bender E, Zurakowski D et al. A model
of human tumor dormancy: an angiogenic switch
from the nonangiogenic phenotype. J Natl Cancer
Inst 2006; 98(5): 316–25.

59. Meng S, Tripathy D, Frenkel EP et al. Circulating
tumor cells in patients with breast cancer dormancy.
Clin Cancer Res 2004; 10(24): 8152–62.

60. Marches R, Scheuermann R, Uhr J. Cancer dor-
mancy: from mice to man. Cell Cycle 2006; 5(16):
1772–8.

61. Apostolaki S, Perraki M, Pallis A et al. Circulating
HER2 mRNA-positive cells in the peripheral blood
of patients with stage I and II breast cancer after the
administration of adjuvant chemotherapy: evalua-
tion of their clinical relevance. Ann Oncol 2007;
18(10): 1623–31.

62. Shackleton M, Vaillant F, Simpson KJ et al. Generation
of a functional mammary gland from a single stem
cell. Nature 2006; 439(7072): 84–8.

63. Clarke MF, Fuller M. Stem cells and cancer: two
1faces of eve. Cell 2006; 124(6): 111–15.

64. Liu R, Wang X, Chen GY et al. The prognostic role
of a gene signature from tumorigenic breast-cancer
cells. N Engl J Med 2007; 356(3): 217–26.

65. Becker S, Becker-Pergola G, Wallwiener D et al.
Detection of cytokeratin-positive cells in the bone mar-
row of breast cancer patients undergoing adjuvant
therapy. Breast Cancer Res Treat 2006; 97(1): 91–6.

66. Becker S, Solomayer E, Becker-Pergola G et al.
Primary systemic therapy does not eradicate dissem-
inated tumor cells in breast cancer patients. Breast
Cancer Res Treat 2007; 106(2): 239–43.

67. Balic M, Lin H, Young L et al. Most early dissemi-
nated cancer cells detected in bone marrow of
breast cancer patients have a putative breast cancer
stem cell phenotype. Clin Cancer Res 2006; 12(19):
5615–21.

68. Wicha MS. Cancer stem cells and metastasis: lethal
seeds. Clin Cancer Res 2006; 12(19): 5606–7.

69. Braun S, Kentenich C, Janni W et al. Lack of effect of
adjuvant chemotherapy on the elimination of single
dormant tumor cells in bone marrow of high-risk
breast cancer patients. J Clin Oncol 2000; 18(1): 80–6.

Walker-8050-07:Walker-8050-07.qxp 5/30/2008 6:34 PM Page 95



96 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER

70. Wiedswang G, Borgen E, Karesen R et al. Isolated
tumor cells in bone marrow three years after diag-
nosis in disease-free breast cancer patients predict
unfavorable clinical outcome. Clin Cancer Res 2004;
10(16): 5342–8.

71. Müller V, Hayes D, Pantel K. Recent translational
research: circulating tumor cells in breast cancer
patients. Breast Can Res 2006; 8: 110.

72. Mehes G, Witt A, Kubista E et al Circulating breast
cancer cells are frequently apoptotic. Am J Pathol
2001; 159(1): 17–20.

73. Hayes DF, Cristofanilli M, Budd GT et al. Circulating
tumor cells at each follow-up time point during ther-
apy of metastatic breast cancer patients predict pro-
gression-free and overall survival. Clin Cancer Res
2006; 12(14): 4218–24.

74. Budd GT, Cristofanilli M, Ellis MJ et al. Circulating
tumor cells versus imaging – predicting overall sur-
vival in metastatic breast cancer. Clin Cancer Res
2006; 12(21): 6403–9.

75. Cristofanilli M, Mendelsohn J. Circulating tumor
cells in breast cancer: advanced tools for “tailored”
therapy? Proc Natl Acad Sci USA 2006; 103(46):
17,073–4.

76. Ntoulia M, Stathopoulou A, Ignatiadis M et al.
Detection of mammaglobin A-mRNA-positive
circulating tumor cells in peripheral blood of
patients with operable breast cancer with nested RT-
PCR. Clin Biochem 2006; 39(9): 879–87.

77. Xenidis N, Perraki M, Kafousi M et al. Predictive and
prognostic value of peripheral blood cytokeratin-19
mRNA-positive cells detected by real-time polymerase
chain reaction in node-negative breast cancer patients.
J Clin Oncol 2006; 24(23): 3756–62.

78. Quintela-Fandino M, Lopez JM, Hitt R et al. Breast
cancer-specific mRNA transcripts presence in
peripheral blood after adjuvant chemotherapy pre-
dicts poor survival among high-risk breast cancer
patients treated with high-dose chemotherapy with
peripheral blood stem cell support. J Clin Oncol
2006; 24(22): 3611–18.

79. Pierga JY, Bonneton C, Vincent-Salomon A et al.
Clinical significance of immunocytochemical detec-
tion of tumor cells using digital microscopy in
peripheral blood and bone marrow of breast cancer
patients. Clin Cancer Res 2004; 10(4): 1392–400.

80. Benoy IH, Elst H, Philips M et al. Real-time RT-PCR
detection of disseminated tumour cells in bone mar-
row has superior prognostic significance in compari-
son with circulating tumour cells in patients with
breast cancer. Br J Cancer 2006; 94(5): 672–80.

81. Wiedswang G, Borgen E, Schirmer C et al.
Comparison of the clinical significance of occult
tumor cells in blood and bone marrow in breast can-
cer. Int J Cancer 2006; 118(8): 2013–19.

82. Romond EH, Perez EA, Bryant J et al. Trastuzumab plus
adjuvant chemotherapy for operable HER2-positive
breast cancer. N Engl J Med 2005; 353(16): 1673–84.

83. Solomayer EF, Becker S, Pergola-Becker G et al.
Comparison of HER2 status between primary tumor
and disseminated tumor cells in primary breast can-
cer patients. Breast Cancer Res Treat 2006; 98(2):
179–84.

84. Meng S, Tripathy D, Shete S et al. uPAR and HER-2
gene status in individual breast cancer cells from
blood and tissues. Proc Natl Acad Sci USA 2006;
103(46): 17,361–5.

85. Schlimok G, Funke I, Holzmann B et al. Micrometastatic
cancer cells in bone marrow: in vitro detection with
anti-cytokeratin and in vivo labeling with anti-17-1A
monoclonal antibodies. Proc Natl Acad Sci USA
1987; 84(23): 8672–6.

86. Cote RJ, Rosen PP, Lesser ML et al. Prediction of
early relapse in patients with operable breast cancer
by detection of occult bone marrow micrometa stases.
J Clin Oncol 1991; 9(10): 1749–56.

87. Harbeck N, Untch M, Pache L et al. Tumour cell
detection in the bone marrow of breast cancer
patients at primary therapy: results of a 3-year
median follow-up. Br J Cancer 1994; 69(3): 566–71.

88. Diel IJ, Kaufmann M, Costa SD et al. Micrometastatic
breast cancer cells in bone marrow at primary
surgery: prognostic value in comparison with nodal
status. J Natl Cancer Inst 1996; 88(22): 1652–8.

89. Molino A, Pelosi G, Turazza M et al. Bone marrow
micrometastases in 109 breast cancer patients: correla-
tions with clinical and pathological features and prog-
nosis. Breast Cancer Res Treat 1997; 42(1): 23–30.

90. Mansi JL, Gogas H, Bliss JM et al. Outcome of
primary-breast-cancer patients with micrometastases:
a long-term follow-up study. Lancet 1999; 354(9174):
197–202.

Walker-8050-07:Walker-8050-07.qxp 5/30/2008 6:34 PM Page 96



INTRODUCTION

Breast cancer is the most common malig-
nancy in women and accounts for 30% of all
female cancer.1 The prevalence of the disease
has increased in recent decades in part due to
in an increasingly aging population and to
increased detection following the introduc-
tion of mammographic screening. In addi-
tion, Western lifestyle changes have had an
impact on established risk factors such
as age at menarche, first pregnancy and
menopause.2,3 The introduction of new treat-
ments has led to improved patient survival
and so the rate of mortality has not risen
as sharply as the prevalence. However, the
development of novel and improved strate-
gies for reducing mortality remain a priority.
Alternative approaches to breast cancer detec-
tion are needed both for developing coun-
tries, where the high cost of mammography
precludes the use of this approach, and for
the detection of premenopausal breast can-
cer. Accumulating data from studies of tumor-
specific alterations in circulating cell-free
DNA suggest that analysis of nucleic acids in
blood could provide noninvasive tests for
diagnosis and monitoring of breast cancers.
The aim of this chapter is to review progress
in the investigation of the clinical utility of
plasma DNA and RNA analysis for determin-
ing breast cancer behavior and for early detec-
tion of breast cancer. 

DETECTION OF DISSEMINATED
TUMOR CELLS AND CIRCULATING
TUMOR CELLS

Both early diagnosis of breast cancer and identi-
fication of metastases can improve the success of
breast cancer treatment.4 Two approaches cur-
rently under close scrutiny for diagnostic and
prognostic use are detection of disseminated
tumor cells (DTCs) and detection of circulating
tumor cells (CTCs), as discussed in Chapter 7.
Although the risk of invasive bone marrow
aspiration has made its routine use for breast
cancer screening and follow-up problematic for
patients, a number of groups have successfully
detected DTCs in the bone marrow in primary
breast cancer patients (reviewed by Slade and
Coombes5). Detection of CTCs in the blood is
obviously a much less invasive procedure. Their
presence probably reflects a relapse or metasta-
sis; hence, detection of CTCs may be most useful
in metastatic disease and for monitoring of the
adjuvant situation.6 However, CTCs have been
detected at a low frequency in early stage disease7

and recently CTCs were detected in 10 of 35
(29%) stage I patients using a sensitive quantita-
tive (q) reverse transcription polymerase chain
reaction (RT-PCR) assay.8 These data highlight
the need for larger scale studies comparing
detection of DTCs and CTCs in early stage dis-
ease, and comparing sensitivity and specificity
with assessment of cell-free nucleic acids in the
circulation. 

Plasma tumor DNA in determining
breast cancer behavior
Jacqueline A Shaw, Karen Page, Natasha Hava and
R Charles Coombes

8
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DETECTION OF CIRCULATING
NUCLEIC ACIDS IN PLASMA
OR SERUM

The first description of DNA in plasma or
serum was by Mandel and Métais in 1948.9

Using a perchloric acid precipitation method,
they detected both DNA and RNA at a concen-
tration of between 0.3 to 1.0 mg/l of plasma in
healthy and sick individuals. This concentration
is higher than that reported in more recent
studies, probably reflecting both methodologi-
cal and sample differences. It was not until the
1960s that the field was revisited when high lev-
els of DNA were reported in the serum of
patients with systemic lupus erythmatosis.10

Subsequent studies showed increased concen-
trations of free DNA in plasma or serum from
patients with rheumatoid arthritis, pancreatitis,
pulmonary embolism, ulcerative colitis, inflam-
matory bowel disease, peptic ulcer, and other
inflammatory conditions.11–14 Increasingly sen si-
tive assays were also able to detect small
amounts of free DNA, up to 30 ng of soluble
DNA/ml, in the serum and plasma of healthy
individuals.15

Subsequently, patients with cancer were
shown to have higher levels of free circulating
plasma DNA than those with nonmalignant dis-
ease, often >100 ng/ml of plasma.11,16–18 Leon
et al16 used a radioimmunoassay to study the
level of free DNA in the serum of 173 patients
with cancer and 55 healthy individuals. The
mean DNA concentration was 13 ng/ml in the
healthy controls and 180 ng/ml in the cancer
patients.16 Similar levels were reported for
26 patients with breast cancer, where the
mean concentration of DNA in plasma was
211 ng/ml but was only 21 ng/ml for 92
healthy female controls (p <0.01) matched
closely for age and menopausal status.19

For the 173 cancer patients studied by Leon
et al,16 subsequent studies found no correla-
tion between the level of free DNA in serum
and either the size or location of the primary
tumor. However, significantly higher levels of
free DNA were found in the serum of patients
with metastases compared to those with local-
ized disease. Lymphomas, lung, ovarian,
endometrial, and cervical carcinomas that

responded to radiotherapy were shown to
have up to a 90% decrease in DNA levels in
serum, whereas persistently high or increasing
DNA levels were associated with a lack of
response to treatment.20 Hence, quantitative
analysis of circulating nucleic acids might be
useful for disease monitoring.

RECENT QUANTITATIVE AND
QUALITATIVE ANALYSES OF
BREAST CANCER PLASMA DNA 

With the now widespread availability of real-
time qPCR a number of research groups have
developed quantitative assays to determine the
level of cell-free DNA in plasma and serum.
These assays measure the concentration of
a known gene (typically glyceraldehyde
3-phosphate dehydrogenase (GAPDH); Genbank
Accession No. J04038) in either plasma or
serum samples relative to a serial dilution curve
starting with a known concentration of human
genomic DNA. Gal et al21 analyzed serum 
samples from 96 patients with primary breast
cancer and compared these to 24 healthy
controls. The DNA concentration in the serum
of the patients differed significantly from the
controls. The medians were 221 ng/ml and
63 ng/ml of serum, respectively (p < 0.001),
and serum DNA levels were elevated in cancer
independently of the size of the primary tumor
or lymph node metastases. However, others
have cautioned against the use of serum to
monitor the concentration of cell-free DNA in
a patient’s circulation since most cell-free DNA
in serum samples may be generated during the
process of clotting in the original collection
tube.22 This is supported by the consistent finding
of lower amounts of cell free-DNA in plasma
than in serum.

Huang et al23 reported the median plasma
DNA concentration of 61 breast cancer patients
as 65 ng/ml. This was shown to be signifi-
cantly higher than that in either 31 patients
with benign breast disease (median 22 ng/ml,
p <0.05) or 27 healthy controls (median
13 ng/ml). There was no association with
plasma DNA concentration or clinicopathologi -
cal parameters.23 A similar study compared
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plasma DNA from 33 patients with breast can-
cer, 32 females with benign breast lesions and
50 healthy female controls. The results
showed that the level of cell-free DNA in the
breast cancer group was significantly higher
than in either the benign breast lesion or the
control groups (p = 0.007 and 0.013, respec-
tively), and higher DNA levels were associated
with malignant tumor size.24

We, and others, have shown that there is
also a qualitative difference, with increased
DNA integrity in plasma being associated with
cancer.25,26 Using PCR analysis of increasing
sized amplicons, we were able to amplify

>500bp amplicons in plasma DNA from breast
cancer patients compared to <300bp in
healthy female controls.26 In a cohort of both
high risk (HR; >3 nodes positive at the time
of diagnosis) and low risk (LR; T1/node-
negative) cases, DNA fragments >512bp were
detected in 16 of 22 HR samples and 13 of 16
LR samples (K Page, personal communica-
tion). However, none of 28 healthy female
control samples had amplifiable DNA frag-
ments >272bp in size.

Recently, we have developed a real-time
qPCR assay using a common probe to detect
two GAPDH amplicons of 96bp and 291bp in
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Figure 8.1 GAPDH quantitative polymerase chain reaction for quantitation of DNA and analysis of DNA integrity.
Measurement of reaction efficiency: (a) 96bp amplicon R2 = 0.98, slope = −3.31, efficiency = 100%; (b) 291bp amplicon
R2 =0.98, slope =−3.2, efficiency = 105%.
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size. The assay uses a sensitive Minor Groove
Binder TaqMan probe, which enables
increased probe specificity at the same time
as using a shorter DNA probe. Figure 8.1
shows standard curves produced from serial
dilutions of cell line genomic DNA for the
96bp and 291bp amplicons. Since the effi-
ciency of the two assays is approximately
equal, it is possible calculate the ratio of the
concentration of the two amplicons as a mea-
sure of DNA integrity. Using these assays we
have compared DNA concentration and
integrity for 33 early stage primary breast
cancers, 30 metastatic breast cancers, and 25
healthy female controls. The mean plasma
DNA concentration (Table 8.1) and DNA
integrity was shown to be significantly higher
in metastatic breast cancers than in controls
(p <0.001 and 0.003, respectively). However,
there was clear overlap between the early
stage primary patient group and the controls
when comparing both DNA concentration

(Table 8.1 and Figure 8.2) and integrity
(Figure 8.3). 

Similar findings have been reported for
cell-free DNA in serum. Using real-time qPCR
analysis of ALU DNA repeats, the mean
serum DNA integrity was shown to be signifi-
cantly higher in late-stage breast cancers
(assessed as American Joint Committee on
Cancer stage II–IV disease) than healthy
females, but not in early stage (stage 0 or
stage I) cancers.27 The study also assessed 15
females with postoperative recurrence of
breast cancer and found a high mean serum
DNA integrity, similar to that of patients with
stage III or IV primary breast cancer. Large-
scale studies are now needed to more fully
evaluate the utility of plasma and/or serum
quantitative and integrity analyses for breast
cancer screening and monitoring. However,
whilst these real-time qPCR assays are simple
and rapid, we suggest caution with their use
as a predictive test in individual cases, since
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DNA samples by quantitative polymerase chain reaction
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Figure 8.3 Measurement of the DNA integrity index in
control, metastatic, and primary breast cancer plasma DNA
samples by quantitative polymerase chain reaction analysis.
The DNA integrity index was calculated as the ratio of the
concentration of the 291bp and 96bp amplicons. The
upper and lower limits of the boxes and the line inside
the box represents the 75th and 25th percentiles and the
median, respectively. The upper and lower horizontal bars
denote the 90th and 10th percentiles, respectively. The
metastatic plasma DNA group was significantly different to
the control group (p = 0.003 Mann-Whitney).
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single measurements may overlap between
the different groups.

DETECTION OF TUMOR-SPECIFIC
ALTERATIONS IN CELL-FREE DNA
IN PLASMA/SERUM 

Stroun et al28 were the first to characterize cir-
culating DNA from the plasma of cancer
patients. They used a 32P-labeled human DNA
probe to show that it was human in origin and
comprised of double-stranded fragments of up
to 21kb in length.28 Detectable amounts of cir-
culating DNA were found predominantly in
patients with advanced malignancies bearing a
large tumor cell burden. They then went on to
demonstrate that plasma DNA from cancer
patients had decreased strand stability, in
common with DNA of cancer cells, and was
of tumor origin,29 hence paving the way for
analysis of tumor-specific alterations in plasma
DNA.

Two key studies published back-to-back in
1996 first demonstrated that tumor-specific loss
of heterozygosity (LOH) could be detected by
PCR in the plasma and serum of patients with
advanced small cell lung cancer, and head and
neck cancer, respectively.30,31 Tumor specific
LOH were subsequently detected in the plasma
of breast cancer32,33 and colon cancer patients;34

and K-ras and p53 gene mutations,35–37 and
aberrant promoter hypermethylation of tumor-
suppressor genes including p16INK4a were
demonstrated in non-small cell lung cancer and
liver cancer patients, respectively.38,39

Many studies have attempted to correlate
tumor-specific alterations in plasma DNA
with prognosis. Some studies report high

detection rates of tumor-specific alterations,
whilst others report very low detection rates.
For example, LOH was detected in the
plasma DNA of 32 of 57 melanoma cases
(56%). For stage III disease, the presence of
LOH in preoperative plasma DNA was shown
to be an independent variable associated with
an increased risk of death (p = 0.05). Fur -
thermore, LOH at the D1S228 marker in the
plasma of patients with advanced disease cor-
related significantly (p = 0.0009) with a poorer
survival after surgical resection.40 However, in
91 head and neck squamous cell carcinomas,
tumor-derived DNA was unambiguously
detected in the plasma of only 17 patients.
Moreover, the presence of circulating tumor-
derived DNA could not be correlated with
disease outcome or other clinical parameters,
suggesting that the particular alterations
studied had no prognostic significance.41 The
most useful tumor-specific DNA markers
remain to be defined and validated for each
cancer type.

For colorectal cancer, Diehl et al42 showed
that mutant adenomatous polyposis coli (APC)
molecules were detected in the plasma of >60%
of patients with early colorectal cancers.42,43

However, they were not able to detect mutant
DNA in the plasma of patients with premalig-
nant adenomas. The levels of mutant APC mol-
ecules in the plasma were low, averaging only
11% of the total DNA molecules, even in very
large adenomas. Therefore, they suggested cau-
tion against reliable detection of LOH in
plasma, at least in colorectal cancers. However,
the sensitivity of mutation detection remains to
be more fully assessed in a wider range of can-
cer types and a larger series of cases.
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Table 8.1 Mean concentration of plasma DNA measured by quantitative polymerase chain reaction using 96bp
GAPDH amplicon relative to serial dilutions of cell line DNA: 33 primary breast cancers; 30 metastatic breast cancers;
25 healthy female controls

Sample Mean plasma DNA (ng/ml); (range) ± SEM

Control group 9.86 (0.0031–63.44) 7.74
Metastatic breast cancer 101.34 (1.23–932.21) 34.4
Primary (early) breast cancer 51.41 (0.01–777.08) 42.92

Walker-8050-08:Walker-8050-08.qxp 5/30/2008 4:51 PM Page 101



TUMOR-SPECIFIC GENETIC
ALTERATIONS IN SERUM/
PLASMA DNA OF BREAST CANCER
PATIENTS 

Most studies of breast cancer plasma DNA
have focused on detection of LOH and/or
p53 mutation. Silva et al33 first analyzed 62
breast cancer cases for LOH and/or microsatel-
lite instability (MSI) at 6 polymorphic mark-
ers, p53 mutations, and promoter methylation
of p16INK4a. They identified 56 cases (90%)
with at least one molecular event in tumor
DNA, 41 (66%) of which showed a similar
alteration in plasma DNA. The presence of
plasma DNA with tumor-specific alterations
showed a statistically significant correlation
with parameters associated with poor progno-
sis: high proliferative index, 3 or more positive
lymph nodes, infiltrating ductal carcinoma
(IDC) type, and grade III tumors with peri-
tumoral vessel involvement and lymph node
metastasis. The concordance between plasma
and tumor DNA alterations varied from 42%
for point mutations in p53 to 100% for LOH
at the TH2 marker. In subsequent studies of
147 patients on follow-up, 61 cases showed
concurrent alterations in tumor and plasma
DNA, and 74% of the recurrences were in
patients with circulating tumor DNA.44 Univariate
statistical analysis showed that tumor plasma
DNA was a predictor of both disease-free sur-
vival44 and overall survival.45

Chen et al32 studied 61 breast cancer
patients in three subgroups using different
markers: 23 of the cases were analyzed with 11
markers; 81% of the tumor samples showed
LOH; and 48% had LOH in the correspond-
ing serum sample. Three patients who had
metastatic disease at the time of diagnosis dis-
played LOH in plasma or serum at more than
1 locus; otherwise no obvious correlation was
found between detection of plasma/serum
with tumor-specific alterations and any clini-
copathological parameters. However, two
patients with small grade 1 tumors and one
case of ductal carcinoma in situ (DCIS) also
displayed specific DNA alterations in serum/
plasma DNA, suggesting that circulating

tumor-specific DNA may appear at an early
pathological stage. Thus far, there have been
no other large-scale studies reported to sub-
stantiate these findings.

p53 mutations have been reported in 50–
75% of breast carcinomas,46 suggesting that
p53 mutation may constitute a useful tumor
marker.42 Shao et al48 identified 30 of 46
patients (65.1%) with p53 mutations in the
primary tumor which had the same mutation
in plasma DNA.49 These plasma DNA muta-
tions were correlated with clinical stage,
tumor size, lymph node metastasis and estro-
gen receptor (ER) status (p <0.05). Moreover,
patients with both primary tumor and plasma
p53 mutations had the poorest survival: 13 of
22 patients with recurrence and/or metastasis
later had detectable p53 mutations in their
plasma DNA. 

In our studies we identified 10 of 32
patients (31%) with primary breast cancer
showing the same LOH (6 of 32) or MSI (4 of
32) between plasma and tumor DNA. There
were no significant differences observed in
terms of node involvement or tumor size
between the 10 patients that displayed LOH
or MSI in plasma DNA and the 22 patients
who had no tumor-specific alterations
detected. Where follow-up blood samples
were available (n = 21), the second plasma
and lymphocyte DNA samples showed the
same genotypes as the preoperative sample.50

In a separate study of 16 patients, using 24
microsatellite markers, no association was
found between plasma LOH and tumor stage
or the clinical status at time of blood collec-
tion. Although plasma LOH was concordant
with the primary tumor for 12 cases, detection
of LOH was not consistent between serial sam-
ples from 5 cases, despite stable clinical con-
ditions.51 More suitable markers and larger
cohorts of patients need to be studied to
resolve these differences.

Of the 10 patients in our study with primary
breast cancer with LOH or MSI in plasma
DNA, 5 patients had no involved lymph nodes
and 8 showed no evidence of lymphovascular
invasion. This contrasts with the data of Silva
et al33 who found a significant correlation
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between microsatellite alterations and involve-
ment of ≥3 lymph nodes. Importantly, our
findings suggest that tumor cell access to the
vasculature exist, even in breast cancers where
none can be seen by conventional histology.
The origin of this circulating DNA remains
unknown; lysis of primary tumor and/or cir-
culating tumor cells, apoptosis of some tumor
cells, and necroses of tumor cells have all been
proposed previously.52 It is likely that active cell
destruction is required to generate cell-free
plasma DNA.49 The follow up of a larger cohort
of cases is currently ongoing in our group in
order to establish whether variations in plasma
tumor DNA might anticipate clinical diagnosis
and predict clinical behavior. 

DETECTION OF EPIGENETIC
CHANGE

DNA methylation at CpG dinucleotides in the
promoter region of many genes is commonly
associated with transcriptional gene silencing.
Gene hypermethylation is therefore another
mechanism for inactivation of tumor-suppressor
genes,53 and has been shown to be a frequent
and early alteration in many tumor types,
including breast cancers.54–56 Hence, early
methylation changes might prove to be useful
markers for cancer screening if they are also
tumor specific. A number of tumor-suppressor
genes, including RAS-associated domain fam-
ily protein 1A (RASSF1a)57 and adenomatous
polyposis coli (APC),58 have been shown to be
hypermethylated in breast cancers but unmethy-
lated in normal cells, and these and other tar-
gets are currently being studied as potential
cancer-specific biomarkers in both serum and
plasma.

Thus far, there have been five studies pub-
lished, which have examined promoter hyper-
methylation in paired tumor and serum, or
plasma DNA from breast cancer patients using
PCR-based approaches (summarized in Table
8.2). In total, 12 different loci have been inves-
tigated, with p16, APC, and RASSF1a common
to more than one study.59–63 Using just two
markers, p16 and CDH1, Hu et al59 were first
to demonstrate common methylation in

plasma and tumor DNA for 9 of 36 (25%)
breast cancers.59 Moreover, the other 25 cases
without methylation in tumor DNA did not
show any epigenetic change in plasma. Tumor
suppressor promoter hypermethylation was
then detected in preinvasive DCIS.60 However,
the study also detected methylation in a small
proportion (13%) of the 76 female controls
studied, suggesting that the particular methyla-
tion events were not tumor specific. Recently,
Sharma et al63 reported high sensitivity and
demonstrated concordant hypermethylation
between tumor and serum DNA for 30 of 36
(83%) breast cancers. These studies hold
some promise for methylation-based cancer
screening and monitoring. However, issues
remain to be resolved in terms of assay sensi-
tivity and specificity, and additional studies are
needed to fully validate hypermethylation-
based screening in a larger number of cases
and to examine HR populations.

CELL-FREE RNA

Circulating cell-free RNA has also been found
in the plasma and serum of healthy individu-
als,64 with increased levels detected in cancer
patients,65–67 including breast cancers.68 Fewer
studies have been published than for circulat-
ing DNA, in part due to RNA stability prob-
lems in stored and freeze-thawed samples,69

and reproducibility problems with RNA analy-
ses.70 Silva et al71 used nested RT-PCR to detect
the presence of cytokeratin 19 (CK19) and
mammoglobin RNA in plasma as markers of
tumor epithelial cell RNA: 27 (60%) and
22 (49%) of 45 breast cancer patients were
positive for CK19 and mammoglobin RNA,
respectively. The presence of either mRNA
alone or combined with plasma correlated
with poor pathological parameters (tumor
size and proliferative index) and with the
presence of circulating tumor cells. Since
telomerase activity has been detected in
almost all types of cancer tissue, it has been
proposed as a new reliable tumor marker.
Among 25 breast cancer patients, telomerase
RNA for human Telomerase RNA (hTR) and
human Telomerase Reverse Transcriptase
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(hTERT) subunits was detected in the plasma
of 23 and 12 patients, respectively.72 In a
recent study, erbB2 mRNA was detectable in
the plasma of 46 of 106 (43.3%) breast cancer
patients, whereas only 5 of 50 healthy subjects
in the control group (10%) were positive (p =
0.001).73 However, the presence of erbB2
mRNA in the plasma was not associated with
erbB2 expression in the primary tumor, but
was significantly associated with negative ER
and progesterone receptor (PR) status of the
primary tumor (p = 0.031 and 0.026, respec-
tively). Further studies are needed to deter-
mine whether circulating cell-free mRNA may
serve as a complementary tumor marker for
breast cancer monitoring.

CONCLUSIONS AND POSSIBLE
FUTURE PERSPECTIVES

Early detection of cancer must ultimately
move towards population screening for
asymptomatic cases. A blood-based assay is
clearly an attractive idea for the future, which
should be acceptable to the general popula-
tion. Such an assay might focus on the detec-
tion of a combination of factors, identifiable
in both circulating tumor cells and circulating
nucleic acids. However, before a multibio-
marker test can be developed and validated, a
number of key issues remain to be resolved.
Although the majority of plasma/serum DNA
alterations concur with those seen in tumor

DNA, several studies have shown alterations
in plasma or tumor only (e.g. Silva et al37 and
Shaw et al50). Garcia et al74 showed that het-
erogeneous tumor clones, and not PCR arte-
facts, could explain some nonmatched
alterations between plasma and tumor DNA.
Clearly, molecular markers which show homo-
geneous alterations in tumor are desired for
analysis in plasma DNA. DNA methylation-
based biomarkers, and detection of common
mutations, are probably the most attractive
for development, although each will require
close scrutiny of assay sensitivity and speci-
ficity. DNA changes have the advantage of
being qualitative (present or absent) rather
than quantitative, such as for mRNA and pro-
tein.50 However, given the differences in
amounts of free DNA detected between can-
cers and controls, it might be useful to com-
bine both qualitative and quantitative criteria
for detection of tumor-specific DNA in blood.
A number of research groups, including our
own, are currently following up different
cohorts of patients with a range of molecular
markers and assays. However, additional stud-
ies will be needed in order to validate the
most useful markers for plasma/serum DNA
and/or RNA analysis in large cohorts of
breast cancer patients and other tumor types.
Ultimately, the development of a high-
throughput sensitive blood-based test may
well be achievable for early detection of
breast cancer. 
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Table 8.2 Promoter hypermethylation in serum/plasma of breast cancer patients

Number of Markers Hypermethylation Hypermethylation 
cases studied analyzed Method in tumor in serum/plasma

36 p16, CDH1 MSP 11 (31%) 9 (25%) plasma59

34 RASSF1A, MSP 32 (94%) 26/34 (76%) serum60

APC, DAP-kinase
84 APC, GSTP1, qMSP 48 (87%) 32 (67%) plasma61

RASSF1A, RARβ2

50 TMS1, BRCA1, MSP 36 (72%) 32 (64%) serum62

ERα PRB

36 p16, p14(ARF), MSP 31 (86%) 30 (83%) serum63

cyclin D2, Slit2

MSP, Methylation-specific polymerase chain reaction (PCR); qMSP, quantitative methylation-specific PCR.
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ENDOCRINE THERAPIES FOR
BREAST CANCER

Breast cancer is the most common female can-
cer in the Western world (accounting for 28%
of all cancers) and the leading cause of death
by cancer in women (approximately 20%).
Although the mortality rate has stabilized or
decreased, the incidence of breast cancer is still
rising in all European countries.1 Around two-
thirds of breast cancers are hormone (estrogen)-
dependent as they are positive for estrogen
receptor alpha (ERα) and/or progesterone
receptor (PR). As estrogen is the principal mol-
ecule stimulating the proliferation of these ER-
positive tumors, blocking estrogen signaling
has been the main endocrine therapy for
patients with ER-positive breast cancer.

Over the past three decades, the antiestro-
gen tamoxifen, which belongs to the first gen-
eration of selective ER modulators (SERMs)
and which acts as an estrogen antagonist on
the breast, has been the gold standard for the
endocrine treatment of all stages of these can-
cers. Tamoxifen acts as a SERM by blocking
the AF-2 domain of ER but does not inhibit
AF-1 activity (Figure 9.1). The benefits of
tamoxifen and chemotherapy in women who
have node-negative ERα-positive breast can-
cer have been demonstrated in large clinical
trials such as the National Surgical Adjuvant
Breast and Bowel Project (NSABP) trials B-14
and B-20.2,3 Five years of tamoxifen started

immediately after surgery for early stage
ER-positive breast cancer was shown to reduce
recurrence by 51% and mortality by 28%.4

Tamoxifen can also be used as a chemopre-
ventive agent to reduce the incidence of
breast cancer in high-risk women and to treat
patients with ductal carcinoma in situ (DCIS),
reducing the incidence of invasive cancer and
second primaries.5

However, tamoxifen is only partially effec-
tive because of intrinsic or acquired tumor
resistance. Approximately 40% of patients with
ER-positive breast cancer will not respond to
tamoxifen (de novo resistance). Moreover,
long-term follow-up and clinical trials have
demonstrated that up to 62% of cancers ini-
tially responsive to endocrine therapy subse-
quently escaped control with the patient
requiring salvage surgery.6,7 To circumvent
such tamoxifen resistance, drugs such as aro-
matase inhibitors (AIs) have been developed.
AIs reduce peripheral estrogen synthesis, and
include the irreversible steroidal AI exemes-
tane (Aromasin) and the reversible non-
 steroidal inhibitors anastrozole (Arimidex)
and letrozole (Femara). Recently, third-gener-
ation AIs have proved to be more effective
than tamoxifen for treating both advanced
and early hormone-sensitive breast cancers in
postmenopausal women, as either first- or sec-
ond-line therapy.8,9 The greater efficacy of AIs
compared with tamoxifen in small-scale stud-
ies of postmenopausal women with early breast

Steroid receptors and associated
transcriptional cofactors in
predicting the response to
endocrine therapy
Sandra Ghayad and Pascale A Cohen
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cancer led to large-scale trials demonstrating
that third-generation AIs are effective in the
neoadjuvant, adjuvant and extended adjuvant
settings. While AIs may replace tamoxifen as
first-line endocrine therapy for most post-
menopausal women, tamoxifen will continue
to play a role in premenopausal women, as
second-line therapy in postmenopausal women,
and as chemoprevention in all age groups.10

Another newer endocrine therapy has
recently emerged with the selective estrogen
receptor downregulator (SERD) fulvestrant
(Faslodex, formerly known as ICI 182,780).
This steroidal ER antagonist lacks any agonist
effect but binds, blocks and accelerates the
degradation of ER protein. Fulvestrant has
been shown to be as effective as anastrozole
and tamoxifen in the treatment of advanced
ER-positive breast carcinoma (in second-line
and first-line treatment, respectively).11,12

Other clinical trials have also shown that,
when used in patients with advanced breast
cancer progressing on prior endocrine ther-
apy with tamoxifen or an AI, fulvestrant
yielded a clinical benefit in 43% and 30% of
patients, respectively.11,13,14 These clinical data
underline both the importance of fulvestrant
in the therapeutic arsenal against ER-positive
breast cancers and the fact that fulvestrant is
also prone to resistance.

ENDOCRINE RESISTANCE AND
BIOLOGY OF THE ESTROGEN
RECEPTOR FUNCTION

As resistance to endocrine therapy is one of
the main challenges in the treatment of ER-
positive breast cancer, understanding such
processes is of major importance. In particu-
lar, deciphering the biology of the ER function,
and the proteins which participate in estrogen
signaling, it is hoped to improve our knowl-
edge of the events which cause a response
to endocrine therapy and thus identify accu-
rate predictive markers for responsiveness to
treatment.

In early studies, ER was identified as a
transcription factor regulating the expres-
sion of specific genes in the nucleus. Some of
these genes are important in breast physiol-
ogy, and others for the proliferation and
survival of breast cancer cells. This estrogen-
mediated action in the nucleus is termed
nuclear-initiated steroid signaling (NISS), or
genomic activity of the ER. Recent evidence
also suggests that estrogen can bind ERs
located in or near the plasma membrane and
rapidly activate other signaling pathways.
This is called membrane-initiated steroid
signaling (MISS), or nongenomic activity of
the ER.

CDK2

Ser 104

A/B

1

Ligand-independent AF-1 domain
(transcriptional activation domain)

Ligand-dependent AF-2 domain
(transcriptional activation domain)

DNA-binding
domain

180 263 302 553 595

C D E F

Ser 106 Ser 118 Ser 167

PI3K

AKT

PKA
Pak-1

Ser 305

MAPK
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Figure 9.1  Structural and functional domains of estrogen receptor α; CDK, cyclin-dependent kinase; MAPK, mitogen-
activated protein kinase; PI3K, phosphoinositide kinase-3; PKA, protein kinase A; Ser, serine.
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Nuclear-initiated steroid signaling

ER is a hormone-regulated nuclear transcrip-
tion factor which can induce the expression of
a number of genes (e.g. progesterone recep-
tor (PR)). After the binding of estrogen, ERs
bind to estrogen response elements (EREs) in
target genes, recruits a transcriptional coregu-
lator complex, then regulates the transcrip-
tion of specific genes.15 ER can also function
as a transcriptional regulator in an unconven-
tional manner without DNA binding by teth-
ering to other transcription factor complexes
including AP1, SP1 and USF.16–18 ER action is
controlled by coregulatory proteins termed
coactivators and corepressors, which recruit
enzymes which modulate chromatin structure
to facilitate or repress gene transcription.19

The varied cellular response to SERMs such as
tamoxifen may be related to tissue-specific lev-
els of different coregulatory proteins.20 Other
stimuli in addition to estrogen can enhance
NISS in a ligand-independent manner. One of
the mechanisms for such activation may be
phosphorylation of ER, or its coregulators, at
specific sites induced by growth factors and
stress-related kinases (see also Chapter 10):
(ERK) 1/2 and p38 mitogen-activated protein
kinases (MAPKs); cyclin-dependent kinase
(CDK) 2, CDK7; c-SRC; protein kinase A
(PKA); pp90rsk1; and AKT (for a review, see
Normanno et al21). Phosphorylation of ERα
at serine (Ser) residues clustered at its amino
terminus (Ser104/106, −118, and −167)
enhances transcriptional transactivating activ-
ity arising from the ligand-independent AF-1
domain21 (Figure 9.1).

Membrane-initiated steroid signaling

Growing evidence showing that estrogen can
exert rapid cellular effects within minutes, long
before its effects ongene transcription, suggests
that other mechanisms of action are also
involved. ER can be detected in or near the
plasma membrane where it can interact directly
with, and modulate, several signaling molecules,
including the insulin-like growth factor-1 recep-
tor (IGF1-R), phosphatidylinositol-3-kinase
(PI3K), insulin receptor substrate-1 (IRS1), and

Shc and Src.22–25 The exact consequences of
such events are currently under investigation
and the functional significance has yet to be
deciphered.

The molecular mechanism that leads to
tamoxifen resistance is still not fully under-
stood, and multifactorial changes leading to a
survival system for the cancer cells seem to be
involved, rather than a gain-of-function and/
or a loss-of-function mechanism.26 Cellular
disturbances have been reported as possibly
involved in the emergence of tamoxifen resis-
tance, including modifications in tamoxifen
metabolism;27 ER mutation;28 altered ERα or
ER beta (ERβ) expression;29,30 qualitative and/
or quantitative changes in transcriptional
core   pressors or coactivators;31,32 and phos phory -
lation of ERα by MAPK,33 PI3K/AKT34 or
PKA.35 Compelling evidence has also been
found that close crosstalk between growth fac-
tor signaling and the ER pathway is associated
with the emergence of endocrine resistance
(see also Chapter 10). Hence, inappropriate
activation of growth factor signaling cascades
(e.g. by overexpression of heregulins, trans-
forming growth factor beta (TGFβ), epider-
mal growth factor receptor (EGFR), human
epidermal growth factor receptor 2 (HER2/
erbb2) could promote endocrine resistance.
Supporting data show that MAPK activity cor-
relates with a shorter response to endocrine
therapy in clinical breast cancer.36 Compelling
data also suggest that activation of the
PI3K/AKT pathway is associated with: resis-
tance to endocrine therapy; worse outcome
in breast cancer patients;37 and relapse and
death in ER-positive breast patients treated
with tamoxifen.38

By a NISS mechanism of action, ERα can
also induce the expression of transcripts for
amphiregulin,39 which is able to bind and acti-
vate EGFR, leading to activation of MAPK and
AKT pathways.40 Conversely, the cytoplasmic
kinases may phosphorylate coactivators which
can modify ERα activity.41 Finally, ERα can be
phosphorylated and its transactivation func-
tion activated by a ligand-independent mecha-
nism. In particular, ERα is phosphorylated at
key positions (Ser118 and -167) in the AF-1
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domain after activation of the MAPK or
PI3K/AKT pathways34,42 (Figure 9.1). An
important step in the progression of tamoxi -
fen resistance is the loss of tamoxifen’s anti -
estrogenic activity to the benefit of an agonist
activity.43 Phosphorylation of the AF-1 domain
or qualitative/quantitative changes in tran-
scriptional coregulators are possible mecha-
nisms involved in this genomic agonist activity
of tamoxifen.

Less information is currently available for the
other drugs used in endocrine therapy. Clinical
studies have shown that tamoxifen-resistant
breast tumors are often sensitive to the SERM
fulvestrant.11,13 A possible mechanism in such
phenotypes is that the tamoxifen resistance
developed by these tumors could be due to
phosphorylation of the ER by PKA (Figure 9.1),
which would convert the antagonist action of
tamoxifen into an agonist, while the cells remain
sensitive to fulvestrant.35 Other studies have sug-
gested that nuclear factor kappa B (NFKB),44

MAPK,45 and neural precursor cell expressed
developmentally downregulated 8 (NEDD8)
PI3K/AKT46 pathways may also be involved in
the development of fulvestrant resistance.47

Little is known concerning resistance to AIs, but
the activation of HER2- and MAPK-mediated sig-
naling pathways, and phosphorylation of ERα at
Ser118, have been observed in xenograft models
of letrozole resistance.48

STEROID RECEPTORS AND
ASSOCIATED TRANSCRIPTIONAL
COFACTORS IN PREDICTING
RESPONSE TO ENDOCRINE
THERAPY

Estrogen receptor alpha

There are two isoforms of ER, ERα and ERβ,
encoded by two different genes. Studies in
rodents have shown that both ERα and ERβ
are expressed in the normal mammary gland49

and that expression of ERα, but not ERβ, is
critical for normal mammary gland ductal
development.50 ER is also expressed in the
normal human breast and a dramatic increase
in ERα expression is seen in early hyperprolif-
erative premalignant lesions.51

The presence or absence of ERα is a well-
established prognostic marker of breast cancer
(at least in the early years following diagnosis)
and a predictive marker for endocrine ther-
apy.52–54 This has led clinicians to distinguish
between ER-positive and ER-negative breast
tumors when coming to clinical decisions. In
the adjuvant setting, a meta-analysis showed
that tamoxifen significantly reduces recurrence
and death only in patients with ER-positive
tumors.55 Similar results have been observed in
trials prospectively designed to test the value of
tamoxifen in ER-negative tumors,3,4 and also in
retrospective studies.56 Prevention trials have
shown that tamoxifen reduces the risk of con-
tralateral endocrine-responsive breast cancer by
almost 50%, but has no effect on ER-negative
tumors.2,57 The conclusion was that tamoxifen
does not provide a clear benefit in ER-negative
tumors. The response to tamoxifen in ER-posi-
tive tumors is directly related to ER levels,58 but
responses have been obtained in tumors that
have as little as 4–10 fmol/mg of ER protein, or
as few as 1–10% of cells positive for ER as shown
by immunohistochemistry.59 One of the adju-
vant AI studies that provides additional data
about ER as a predictive factor is the ATAC
trial, since 16% of randomized patients were
ER-negative or ER unknown.60,61 Hence, a sub-
group analysis showed that these patients had
no benefit in receiving an AI, as previously
shown for tamoxifen.

Phosphorylation of estrogen
receptor alpha

ERα possesses several different phosphoryla-
tion sites which may modulate ERα action and
activate transactivation functions through a
ligand-independent mechanism. In particular,
ERα is phosphorylated in the AF-1 domain at
Ser118 following activation of the MAPK
pathway and at Ser167 by AKT or p90RSK.34,42,62

In ER-positive breast cancers, high levels of
phosphoMAPK have been correlated with a poor
response to endocrine therapy and decreased
patient survival.36 Immuno histochemical stud-
ies of phosphoSer118-ERα have found expres-
sion to be associated with better disease
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outcome in women treated with tamoxifen63

and higher levels to be present in cancers that
responded then progressed on tamoxifen.64

These data suggest that phosphoSer118-ERα
may be a useful marker of an intact ligand-
dependent ER signaling pathway. Conversely,
high levels of phosphoSer118-ERα have also
been detected in ER-positive breast cancers
which do not respond to endocrine therapy,65

and increased levels have been found in biop-
sies taken from patients who relapsed whilst
on tamoxifen.64 Another recent study found
that ER phosphorylated at Ser118 had no pre-
dictive value for the response to endocrine
therapy.66

AKT activation (high levels of phospho -
Ser473-AKT) has been shown to be associated
with decreased overall survival rates in patients
receiving endocrine therapy.38,67 However,
phosphoSer167-ERα has been shown to be a
good prognostic factor in primary breast can-
cer.68 PhosphoSer167-ERα has also been found
to be predictive of response to endocrine ther-
apy, as patients with primary breast tumors
with high phosphorylation levels of ERα at
Ser167 responded significantly to endocrine
therapy and had a better survival rate after
relapse.66 These data suggested that phosphory-
lation of ERα at Ser167 could be helpful in
selecting patients who may benefit from
endocrine therapy.

Taken together, these data clearly illustrate
the complexity of assessing ER phosphoryla-
tion, with different findings for pharma -
cological response and the emergence of
endocrine resistance. This question should be
addressed in future prospective studies. Also,
given the complexity of the crosstalk between
ER and growth factor signaling, assessing the
phosphorylation status of ER at different key
residues might be more informative in the
delineation of subgroups of patients with dif-
ferent responses to endocrine therapy.

Estrogen receptor beta

The recent discovery of a second ER, called
ERβ,69 and of several of its variants, raised the
question of the relative value of ERα and ERβ

in predicting tamoxifen resistance or sensitiv-
ity in breast cancer patients. ERα and ERβ
both mediate gene transcription via ERE.
However, while ERα can also activate gene
transcription from the AP-1 site, ERβ can-
not.70 ERβ binds estrogens with similar affinity
as ERα, but binds antiestrogens and their
hydroxylated metabolites with a higher affinity
than does ERα.71 Unlike ERα, antiestrogen-
occupied ERβ can activate transcription via
nonclassical ER signaling pathways, leading
some investigators to speculate that ERβ could
play a role in tamoxifen resistance through
the agonist activity of tamoxifen.

Contradictory results have been obtained
concerning the predictive value of ERβ in
breast cancer. Initially, it was proposed that ERβ
mRNA could predict endocrine resistance, and
some studies seemed to prove this as elevated
ERβ transcripts correlated with tamoxifen resis-
tance.29,72 However, antibody-based studies have
shown that low ERβ protein expression is asso-
ciated with tamoxifen resistance.73–75 Only one
prospective clinical study has investigated the
relationship between ERβ mRNA expression
and the response to endocrine therapy.76 In this
study, ERβ mRNA expression failed to predict
the response to toremifene. Finally, a recent
study provided new information by showing
that ERβ protein expression may be an inde-
pendent marker of a favorable prognosis after
adjuvant tamoxifen treatment in ERα-negative
breast cancer patients,77 suggesting that patients
diagnosed with ERα-negative/ERβ-positive
breast carcinoma may benefit from adjuvant
tamoxifen.

More recently, studies have been conducted
to consider the role of specific ERβ isoforms.
ERβ2, also known as ERβcx, is the best char-
acterized of the five known ERβ variants and is
identical to ERβ through exons 1–7 but con-
tains an alternative exon 8.78 This predicts
replacement of the C-terminal 61 amino acids
of ERβ encoding the terminal part of the
ligand-binding domain, and the entire
AF-2 domain with a unique 26 amino acid
sequence, enabling this receptor to bind to
tamoxifen. Given that ERβ2 can, through het-
erodimerization, inhibit the transcriptional
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activity of both ERα and ERβ,79 with a pre f-
erence for ERα, this variant may well be sig-
nificant in regulating ER signaling in the
mammary gland. Significantly higher ERβ2
expression in DCIS and in invasive breast can-
cer than in normal breast has been reported.80

In areas of breast tumors with strong ERα
positivity, a significant correlation has also
been observed with ERβ2 expression and PR
negativity.81

Rather than full-length ERβ alone, splice
variants of ERβ may be more valuable asses-
sors of the biological status of individual
breast cancers. This was illustrated in a subset
of patients receiving adjuvant tamoxifen
where ERβ2 mRNA (more than full-length
ERβ) predicted their response to endocrine
therapy and was associated with relapse-free
survival.82 Supporting data showed that ERβ2
protein expression correlated with a favor-
able response to endocrine therapy, with
patients having ERβ2-positive tumors show-
ing increased survival.83 Finally, in breast can-
cers with low PR expression, ERβ2 protein
expression was found to correlate with a poor
response to tamoxifen, suggesting that evalu-
ating ERβ2 and PR may contribute to a better
characterization of ERα-positive breast can-
cers.81 However, a contradictory study con-
cluded that ERβ2 protein expression was not
predictive of tamoxifen resistance.75 More
recently, a further level of complexity was
added as ERβ2 mRNA levels, but not protein
levels, were found independently to be pre-
dictive of outcome in tamoxifen-treated ERα-
positive breast tumors.84

Finally, two recent studies failed to prove
that an association exists between either ERβ
or ERβ2 protein expression and tamoxifen
resistance.66,85 Taken together, these studies,
with apparently contradictory results, clearly
illustrate the difficulties encountered when
attempting to validate the predictive value of
ERβ and/or ERβ variants in endocrine ther-
apy responsiveness. One of the reasons for
these discrepancies is certainly the lack of uni-
versally and well-validated antibodies against
ERβ proteins, and this question must be
addressed in the future.

Transcriptional estrogen receptor
coregulators

At the nuclear level, ERs directly control the
expression of a number of specific genes
through binding to ERE located in the regu-
latory region of target gene promoters.
Depending on the ligand, ER interacts with
either corepressors or coactivators which
inhibit or enhance ER transcriptional activity.
The current view suggests that the ligand-
bound receptor exists in a dynamic equilib-
rium with coactivator and corepressor proteins,
affording a regular and tightly controlled
regu lation of ER-mediated gene expression.
These coregulators are also able to regulate
the relative agonist/antagonist activity of the
SERM tamoxifen, and it has been suggested
that the coactivator:corepressor ratio may
be important both in endocrine therapy
responsiveness and the development of resis-
tance. Indeed, high levels of coactivator
expression may enhance the agonist activity of
tamoxifen.20,86,87 Assessing coregulator expres-
sion and activity may thus be essential in the
prognosis and for predicting response to
endocrine therapy.31 The most striking find-
ings have been obtained with the two coacti-
vators AIB1 and SRC-1, and the corepressor
NCOR1.

AIB1 – also called SRC-3, RAC3, ACTR, or
p/CIP – is an ER coactivator which is thought
to be important in breast cancer. It is overex-
pressed in breast cancer cells compared with
normal duct epithelial cells and is amplified
in a small proportion of breast tumors.88,89

AIB1, like the ER itself, is phosphorylated and
thereby is functionally activated by MAPKs;
therefore, high levels of activated AIB1 may
reduce the antagonist effects of tamoxifen,
especially in tumors which also overexpress
the HER2 receptor which activates MAPKs.87

To explore these hypotheses, AIB1 protein
levels and HER2 levels were measured in
extracts of frozen breast tumors from 316
patients with long-term clinical follow-up.32

Nearly all of these tumors were ER-positive.
AIB1 protein expression did not correlate
with the quantity of ER but it was inversely
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correlated with PR expression. AIB1 also posi-
tively correlated with a higher S-phase fraction
and higher HER2 expression. Despite the cor-
relation between AIB1 with both S-phase and
HER2 (markers of a more aggressive pheno-
type), high AIB1 expression was a good prog-
nostic factor for patients treated with surgery
alone without adjuvant therapy. Although high
AIB1 expression was associated with improved
disease-free survival in untreated patients,
those patients receiving tamoxifen adjuvant
therapy and having cancers with high AIB1
expression suffered worse disease-free sur-
vival. In a multivariate analysis that included
the same biomarkers as described above, only
the number of positive lymph nodes and AIB1
status were statistically significant predictors
of outcome, consistent with the hypothesis
that high AIB1 expression reduces tamoxi -
fen’s antagonist activity. When AIB1 expres-
sion was considered together with HER2
expression, even more impressive results were
obtained, as only those patients with tumors
which expressed high AIB1 and high HER2
had adverse disease-free survival with tamoxi -
fen. Finally, patients with low expression of
one or both of these proteins showed signifi-
cantly better disease-free survival with tamoxi -
fen adjuvant therapy.

SRC-1 (or NCOA1) is also an ER coactivator
and its expression has been investigated by
immunohistochemical analysis in breast
tumors (ER- and/or PR-positive) in relation
to HER2 status in patients treated with
chemotherapy and tamoxifen. A multivariate
analysis showed that SRC-1 expression was
associated with disease recurrence only in
HER2-positive breast tumors.90 This study sup-
ports the hypothesis that SRC-1 is involved in
tamoxifen resistance only in a specific subset of
breast tumors, and underlines the necessity to
take into account the expression status of previ-
ously identified tamoxifen resistance markers
such as HER2. Interestingly, an inverse relation-
ship between SRC-1 and ERβ was also found
to predict outcome in endocrine-resistant
breast cancer.91

ER-associated corepressors include the NCOR
proteins which recruit histone deacetylases such

as HDAC2 and HDAC4, and inhibit gene tran-
scription.92 In vitro studies have shown that
NCOR1 protein binds ER and inhibits the par-
tial agonist activity of tamoxifen,93 and that
HDAC activity is required for the transrepres-
sive effect of SERMs.94 Additionally, expression
of dominant-negative NCOR in MCF-7 cells was
found to both enhance the transcriptional activ-
ity of tamoxifen bound to ER and induce cell
growth.95 In further studies, MCF-7 cells were
implanted into nude mice which were then
treated with tamoxifen. A decrease in tumor
NCOR levels was associated with acquired resis-
tance in these tumors, with loss of the antipro-
liferative effects of tamoxifen.96 An investigation
of NCOR1 mRNA expression in tamoxifen-
treated ER-positive patients showed that low
NCOR1 mRNA expression status was associated
with shorter relapse-free survival.31 In the same
study, by combining NCOR1 and HER2 mRNA
expression, it was found that patients with the
best prognosis were those with high NCOR1
expression and normal HER2 expression, sug-
gesting that NCOR1 expression may provide an
accurate predictive marker of endocrine ther-
apy responsiveness.

In conclusion, the balance between coactiva-
tors and corepressors seems to play a key role
in the prevention of breast tumor proliferation
by tamoxifen, and supports this as a mecha-
nism associated with endocrine resistance.
Recent in vitro data showed that endocrine
resistance is also associated with the progressive
loss of ER coregulator recruitment.97 In another
recent study, it was observed that ER phosphory-
lation status may be involved in the recruit-
ment of coregulators.98 As phosphorylation by
PKA at Ser305 of ERα altered the orientation
between ERα and its coactivator SRC-1, the
transcription complex was rendered active in
the presence of tamoxifen.98 Taken together,
these results support the idea that transcrip-
tional ER coregulators may be valuable markers
of endocrine therapy response.

Progesterone receptor

About 65–75% of primary breast cancers
express ER; over half of these also express PR,
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and <10% of tumors express PR in the
absence of ER.99 When PR was first identified
as an ER-regulated gene product, it was pro-
posed that the presence of PR might indicate
a functioning ER pathway and a tumor which
is highly dependent on estrogen for growth,
and, consequently, one that would respond
to endocrine therapy.100 Thus, ER-positive
tumors lacking PR would be less dependent
on estrogen and would therefore be less
responsive to endocrine therapy.

Retrospective studies of patients with
metastatic disease, most receiving tamoxifen,
supported this idea.58 PR-negative tumors con-
sistently respond less well to endocrine ther-
apy than PR-positive tumors, although some
do benefit. Elevated PR levels significantly and
independently correlate with a higher proba-
bility of response, longer time to treatment
failure, and longer overall survival in patients
with metastatic disease treated with tamoxi -
fen.56,101 Data confirming the predictive value
of PR also come from adjuvant and neoadju-
vant trials showing that, in agreement with the
studies in metastatic disease, patients with
ER-positive/PR-positive tumors benefited far
more from tamoxifen than those with PR-
negative tumors.54,102–105 Recent supporting
data also showed that PR status provides pre-
dictive value for adjuvant endocrine therapy in
older ER-positive breast cancer patients.106 In
all these studies, both ER and PR were inde-
pendent predictors of outcome in multivari-
ate analyses. PR was still predictive even
when ER was considered as a continuous
variable, indicating that the predictive infor-
mation is independent of quantitative ER lev-
els, an important result considering that the
presence of PR is directly related to quantita-
tive levels of ER.102 When resistance to
endocrine therapy evolves, PR levels decrease
dramatically, with up to half of tumors com-
pletely losing PR expression.107,108 These ER-
positive/PR-negative meta static tumors then
follow a far more aggressive course, with poor
patient survival after PR loss compared with
those retaining PR expression.108,109

However, the observation that some PR-
negative tumors still respond to endocrine

therapy raised questions, with the most strik-
ing data derived from a retrospective analysis
of the results of the ATAC trial.60,110 This trial
randomized postmenopausal women with
early breast cancer to 5 years of treatment with
the AI anastrozole or tamoxifen, or a combi-
nation of the two. Time to recurrence was
longer for anastrozole-treated than tamoxi -
fen-treated patients in both ER-positive/
PR-positive and ER-positive/PR-negative sub-
groups, but the benefit was substantially
greater in the PR-negative subgroup.111 Two
neoadjuvant AI trials validated these observa-
tions.104,112 This suggests that the overall bene-
fit of anastrozole may be due to reduced
tamoxifen efficacy in patients with PR-negative
tumors. These data also indicate that ER-
positive/PR-negative breast tumors are less
responsive to SERM therapy than ER-positive/
PR-positive tumors. Clearly, the simple theory
that PR serves as an indicator of a functionally
intact ER pathway fails to explain why some
patients with ER-positive/PR-negative tumors
still respond to tamoxifen, or differences such
as those between anastrozole and tamoxifen
in the ATAC trial, treatments which both
target ER, albeit in different ways.

These observations are nevertheless com-
patible with new information on the biology of
ER and PR in breast cancer. For instance,
recent laboratory and clinical studies strongly
support the idea that one of the mechanisms
leading to PR gene downregulation is excessive
growth factor receptor signaling, in particu lar
the PI3K/AKT pathway.113 Thus, PR levels may
reflect growth factor activity within a tumor. In
addition, high growth factor signaling may
reduce the ability of tamoxifen to act as an
antagonist, resulting in SERM resistance. It
therefore follows that tumors which have acti-
vated growth factor receptor signaling would
benefit less from tamoxifen and would be more
likely to have little or no PR content. Recent
supporting data demonstrated that HER1–3-
positive and/or PR-negative patients com-
bined as a ‘‘high-risk’’ group were significantly
more likely to relapse on tamoxifen.114

Consequently, tumors with little or negative
PR content would likely be more responsive
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to AIs than tamoxifen, as observed in the
ATAC trial.111 Taken together, these obser-
vations indicate that PR may be a better
indicator than ER for predicting response
to SERM therapy since levels of PR reflect
the combined and integrated effects of
ER and growth factor activity. This also
leads to the prediction that PR may be a
valuable future marker of responsiveness to
growth factor receptor inhibitor therapies.
Finally, PR was not found to have any pre-
dictive value in a recent study of fulvestrant
responsiveness.115

Progesterone receptor isoforms

Another field of future investigation is to deci-
pher the functional importance of the altered
expression of PR isoforms and how this may
affect the response of breast tumors to
endocrine therapy. PR is expressed as two iso-
forms – PR-A and PR-B, which are products of
a single gene but which are under the control
of two distinct promoters.116 The two isoforms
possess different, promoter- and cell line-
specific transactivation properties. Studies
have shown that in poor prognostic tumors,
the ratio between PR-A and PR-B is altered,
with PR-A predominating and loss of PR-B.117

An overabundance of PR-A may be associated
with resistance to tamoxifen,117 while func-
tional polymorphism resulting in increased
production of PR-B may be associated with an
increased risk of breast cancer.118 Other find-
ings showed that PR-B expression was corre-
lated with good prognostic markers and
better overall survival in breast cancer.119 In a
study of T47D human breast tumor xeno -
grafts, tamoxifen preferentially inhibited the
growth of PR-A tumors, whereas PR-B tumors
were unaffected.120 Recently, PR-A and PR-B
were both found to be predictive of response
to endocrine therapy.66 Taken together, these
findings highlight the need for future studies
to decipher the functional importance of the
altered expression of PR isoforms and how
disrupted progesterone signaling may affect
the response of breast tumors to endocrine
therapy.

CONCLUSIONS

Identifying and using biomarkers to predict
the response to anticancer therapies has the
capacity to revolutionize the treatment of
patients with cancer. While the predictive
value of ERα is now universally recognized in
the endocrine therapy of breast cancer, deci-
phering the newly discovered biological roles
for ER and the complex crosstalk with growth
factor signaling provides additional complex-
ity. The discovery of new variants of ER and PR
also opens up new fields of investigation. For
instance, preliminary data on ERα variants
(such as the ERα ERδE7 or the ERα A908G
mutant) indicate that they are able either to
regulate the activity of full-length ERα, or to
modify the pharmacological response to estro-
gen or to antiestrogens (for a review, see
Townson and O’Cornell121). For PR, several
variants and polymorphisms have also been
identified but, in the same manner as for ER
variants, little data has been published regard-
ing their effect on clinical outcome. An impor-
tant question to be addressed in future studies
is therefore the impact of ER and/or PR vari-
ants expression on the response to endocrine
therapy. One future challenge is also to
improve the detection of ER and PR isoforms
and variants to provide important predictive
and/or prognostic clinical information. Taken
together, these data highlight the complex
impact of ER-mediated signaling on clinical
outcome and emphasize that multifactorial
approaches may be required to identify factors
associated with improved endocrine therapy
responsiveness. One of the most promising
strategies is certainly the recent development
of high throughput screening methods in
genomics and proteomics, which should help
to identify new predictive markers of endocrine
therapy.122–124
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INTRODUCTION 

Until relatively recently endocrine response
pathways in breast cancer were described
solely in terms of the intracellular pathways
used by estrogens and the subsequent disrup-
tive effects exerted by antihormonal treat-
ments on estrogen receptor (ER) signaling.1

Thus, it was frequently proposed that estro-
gens promoted tumor growth by binding to
ERs, which then acted as nuclear transcription
factors regulating the expression of genes
involved in proliferation and survival mecha-
nisms. In contrast, antihormones, acting either
to reduce the amount of estrogens available to
the tumor cells or binding the ER to antago-
nize the cellular actions of estrogens, pre-
vented this flow of information to promote
tumor remissions.1,2

However, a more modern view of endocrine
response pathways retains the concept that
estrogens acting through ERs are central to
the development of breast cancer, but also
recognizes that it is naïve to consider ER sig-
naling in isolation of the remainder of the
cancer cell biology.3,4 Indeed, an increasing
number of elements within the breast cancer
phenotype, notably including peptide growth
factors, have now been identified which mod-
ify, and can be modified by, ER signaling.4 As
such, their signal transduction has the capac-
ity to significantly influence the sensitivity of
breast cancer cells to estrogens. Importantly,
however, these factors are also likely to be

critical in the mechanism of response to anti-
hormonal drugs and, moreover, may be inte-
gral in the escape from antihormone control
of growth that occurs on disease relapse.

In this light, the present chapter seeks to
outline the elaborate molecular biology of
estrogen and growth factor-directed mitogen-
activated protein (MAP) kinase interactions
which are likely to play a central role in
hormone-sensitive breast tumor growth. It
subsequently examines how changes often
present in the breast cancer phenotype would
severely perturb the balance of such signaling,
thus providing a possible explanatory hypothesis
for the tumor growth associated with the phe-
nomena of de novo and acquired endocrine
resistance. Routine monitoring of MAP kinase
signaling in breast cancer specimens would
thus be predicted to prove not only prognos-
tically valuable but also relevant in defining a
new and important therapeutic target to
improve the actions of antihormonal drugs in
breast cancer. 

GROWTH FACTOR-INDUCED
MITOGEN-ACTIVATED PROTEIN
KINASE SIGNALING

The MAP kinase signal transduction pathways
are highly conserved signaling cascades which
exert a profound effect on cell physiology.5–7

MAP kinase pathways can be activated by a
variety of different stimuli, including growth

Mitogen-activated protein kinase
family members and endocrine
response and survival in breast
cancer
Iain R Hutcheson, Robert I Nicholson and Julia MW Gee
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factors, cytokines and enviromental stresses,
and play a role in the regulation of cell prolif-
eration, cell differentiation and cell death.
Three families of mammalian MAP kinase
have been identified; the extracellular signal-
regulated kinases (ERKs); p38 MAP kinases;
and c-jun N-terminal kinases (JNKs). Each
family consists of a three-tiered signaling
module that establishes a sequential activation
pathway (Figure 10.1). The first kinase of the
module is a MAP kinase kinase kinase
(MAP3K), which can be activated by either a
MAP3K kinase (MAP4K) or a small guanosine
triphosphate (GTP)-binding protein of the
Rho or Ras family. Activated MAP3K phos-
phorylates and activates a MAP kinase kinase
(MAP2K), which in turn phosphorylates and
activates a MAP kinase. The MAP kinases then
phosphorylate and regulate nuclear proteins,

which coordinate gene transcription, cell
cycle machinery, and cell survival/apoptotic
pathways.

To date, the ERK pathway includes seven
MAP kinases, ERK1–5, 7 and 8,5,7 of which
ERK1/2 are the most extensively studied.
ERK1/2 are believed to play a central role
in cell proliferation and their activation in
response to growth factor stimulation is rea-
sonably well understood. For example, bind-
ing of epidermal growth factor (EGF) to its
receptor stimulates the receptors intrinsic
tyrosine kinase activity, resulting in autophos-
phorylation of tyrosine residues in its cyto-
plasmic domain. Phosphotyrosine residues act
as docking sites for adaptor proteins which
coordinate the activation of the downstream
signal transduction pathways. These adaptor
proteins, which include Shc and Grb2, bind to

Generic
pathway

ERK1/2
pathway

JNK/p38
pathways

Growth factors Cytokines Stress

Upstream
signal

MKKK

Ras

Raf

MEK1, 2 MEK5

MEKK1–5, MLKs, TAOs, TPL-2, ASK, TAK1

Rho, Cdc42, Rac

MEK7 MEK4 MEK6 MEK3
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Figure 10.1 The mitogen-activated protein (MAP) kinase pathways. AP-1, Activator protein 1; ASK, apotosis signal regu-
lating kinases; ERK, extracellular signal-regulated kinases; JNK, c-jun N-terminal kinases; MAPK, mitogen-activated pro-
tein kinase; MKK, MAP kinase kinase (MAP2K); MKKK, MAP kinase kinase kinase (MAP3K); MEK, MEK (MAP kinase
or ERK kinase); MLK, mixed lineage kinases; TAK, transforming growth factor-activated kinase; TAO, thousand and
one; TPL, tumor necrosis factor receptor associated factor; TRAF, tumor necrosis factor receptor associated factor.
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the activated EGF receptor (EGFR), and fur-
ther recruit the guanine nucleotide exchange
factor Son of sevenless (Sos).8 Sos promotes
the activation of Ras by stimulating the
exchange of bound guanosine diphosphate
(GDP) to GTP, which in turn initiates the
sequential activation of the ERK1/2 pathway
module, consisting of Raf-1 (the MAP3K),
MEK1/2 (the MAP2Ks) and ERK1/2 (the
MAP kinases).5,8 The physiological outcome
of MAP kinase signaling depends on both
the magnitude and duration of kinase activa-
tion. The principal mechanism of action of
ERK1/2 is increased cell proliferation as a
consequence of sustained kinase activity, pro-
motion of nuclear transcription factor expres-
sion and activation (e.g. Ets and activator
protein-1 (AP-1) components), and subse-
quent regulation of proteins involved in the
cell cycle, e.g. cyclin D1.9,10 However, high lev-
els of ERK1/2 activity can also lead to cell
cycle arrest through induction of p21 and
p27.10 Other downstream cytoplasmic effec-
tors of ERK1/2 include protein kinases and
phosphatases, cytoskeletal elements, regula-
tors of apoptosis, and a variety of other signal-
ing-related molecules.11 Components of its
own signaling cascade (EGFR, Sos, Raf-1 and
MAP kinase/ERK kinase MEK) are also key
targets, suggesting a possible feedback inhibi-
tion mechanism.7 The MAP kinase pathways
utilizing the remaining ERK3–5, 7 and 8 remain
to be fully characterized, and their roles in
cell physiology have yet to be clearly estab-
lished. However, recent evidence has indi-
cated a potential role for ERK5 in mitogenic
signaling as it can be activated by EGF and
neuregulin stimulation, and can regulate
expression of cyclin D1.9,12

The p38 and JNK pathways are activated by
phosphorylation in response to stress (“stress-
activated” MAP kinase family members;
SAPKs), and may play a central role in the regu-
lation of cell survival/apoptosis and inflam-
mation.6 The upstream activators of the p38
and JNK pathway modules remain unclear,
although recent evidence implicates a role for
the Rho family of GTPases (cdc42, rac) and
the tumor necrosis factor receptor associated

factor (TRAF) adaptor proteins, associated
with the tumor necrosis factor (TNF) family of
receptors.6,13–15 The p38 and JNK pathway
modules are better characterized, and struc-
turally resemble the ERK pathway. The
MEKK1–5 (MAP K and ERK kinase kinases),
mixed lineage kinases (MLKs), apoptosis sig-
nal-regulating kinases (ASKs), Tak1, Cot and
TAO kinases, all act as MAP3Ks in either the
p38 or the JNK pathway modules, and activate
the downstream MAP2Ks 3 ,4, 6 and 7, which
in turn phosphorylate the MAP kinases.6,7 The
JNK pathway module has a potential 12 MAP
kinases, 3 genes encode for JNK1–3 and each
gene has four possible splice variants (α1, α2,
β1 and β2), whereas the p38 pathway module
has just 4 MAP kinase isoforms (p38α, β, γ
and δ).6,7 A prominent action of both p38 and
JNK pathways is the ability to initiate apopto-
sis in certain cell types, possibly through
recruitment of the AP-1 transcription factor
or suppression of the antiapoptotic proteins
Bcl2 and Bcl-XL.6,7,9,16,17 However, these path-
ways alone are not sufficient to induce cell
death in all systems. Other substrates for
these pathways include protein kinases
involved in cytoskeletal regulation (MAP
kinase-activated protein kinases, p38-regu-
lated/activated kinase), protein translation
(MAP kinase-interacting kinases), gene tran-
scription (mitogen- and stress-activated pro-
tein kinases), and insulin receptor signaling,
indicating further roles for these kinases in
cell invasion, proliferation, metabolism and
differentiation.16,17

“CROSSTALK” BETWEEN
ESTROGEN RECEPTOR
AND MITOGEN-ACTIVATED
PROTEIN KINASE-ASSOCIATED
SIGNALING

Many studies have now identified that breast
tumors which exhibit an effective endocrine
response (i.e. complete and partial response)
are often histologically low grade, well-
differentiated and notably ER-positive, with a
minimal level of proliferation at presenta-
tion.18–20 The 40–50% of breast cancer patients
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bearing such tumors frequently enjoy a long
duration of response and survival time.21 In
such tumors, it is likely that ER signaling is
central to mitogenesis, with steroid hormone
occupancy of the receptor efficiently driving
cell growth and survival, together with expres-
sion of target genes bearing either estrogen
response elements (ERE)1,3 or response ele-
ments for other transcription factors which
interact with the ER protein.22 However, it is
increasingly proposed that such events pro-
ceed most efficiently in an appropriate growth
factor environment, with steroid hormone and
growth factor signaling pathways “crosstalk-
ing” to reinforce each other’s signaling.
Notably, ERK1/2 MAP kinase is thought to be
a key regulatory element in the interactions
between estrogen and growth factor crosstalk.
A number of these interactions are detailed
below and are illustrated in Figure 10.2.

The estrogen receptor is a target
for growth factor-induced kinase
activity 

Phosphorylation of estrogen receptors by
mitogen-activated protein kinases

Numerous studies have now shown that the ER
protein is subject to phosphorylation and acti-
vation by several peptide growth factors (e.g.
IGF1,23 EGF, transforming growth factorα
[TGFα 24] and heregulin25), events which can
subsequently initiate ERE-mediated gene
expression.26,27 These events are believed to be
mediated by downstream signal transduction
molecules such as ERK1/2 MAP kinase.24,28–30

This has been consistently shown to activate
ER possibly by mediating phosphorylation of
serine residues 118 and 167, located in the
N-terminal of the ER that contains the ligand-
independent activator function-1 (AF-1)
domain, thereby enhancing recruitment of
coactivators and potentiating AF-1 activ-
ity.24,28,29,31,32 Increased ER transcriptional activ-
ity may also arise as a result of p38-mediated
phosphorylation at threonine residue 311,
which has been shown to promote nuclear
localization of the receptor.33 Similarly, growth
factor-driven ERK1/2 activity has also been
shown to promote nuclear localization of ER
through an AF-1-dependent mechanism;34

however, increased ERK1/2 activity resulting
from HER2 overexpression has also been
reported to reduce nuclear transcriptional
activity by promoting relocalization of ER to
the cytoplasm.35 Further transduction mole-
cules demonstrated to target the ER include
casein kinase II, Akt, pp90rsk1, protein kinase
C δ, protein kinase A, cyclin A/cdk2, and Rho
pathway elements.30,36 In addition, the nonre-
ceptor tyrosine kinase Src is believed to
enhance AF-1 activity not only through ER
phosphorylation via ERK1/2 MAP kinase, but
also via JNK signaling which acts to phosphory -
late coactivators for ER, thereby activating ER
in an indirect manner.37 Significantly, growth
factors and downstream signal transduction
pathways appear to differentially regulate the
two transcriptional activator functions of the
ER (i.e. AF-1 and AF-2), with the former being
highly responsive to EGF, TGFα and MAP
kinase signaling.24 While activation by these
factors occurs most efficiently in the presence
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Figure 10.2 Crosstalk between estrogen
receptor (ER) and mitogen-activated
protein kinase (MAPK)-associated signal-
ing. ERE, Estrogen response element;
GF, growth factor; GFR, growth factor
receptor; NTF, nuclear transcription fac-
tor; RE, response element.
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of estrogens, their promotion of AF-1 responses
certainly appears adequate for initiating tran-
scription in the absence of the steroid hor-
mone. An emerging concept for steroid
hormone receptors is therefore that they func-
tion not only as direct transducers of steroid
hormone effects but, as members of the cellu-
lar nuclear transcription factor pool, also serve
as key points of convergence for multiple sig-
nal transduction pathways.38

Downregulation of estrogen receptors by
mitogen-activated protein kinases

Although, as established above, growth factor
pathways can enhance ER phosphorylation,
transcriptional activity and cell growth in a lig-
and-independent manner, paradoxically a
decline in ER expression is also a possible out-
come when growth factor signaling is extreme
or sustained. Evidence for this arises from sev-
eral stable transfection studies in ER-positive
breast cancer cells. Such studies demonstrate
that growth factor signaling elements compris-
ing the EGFR/HER2 pathway, which share an
ability to hyperactivate ERK1/2 MAP kinase,
all act to impair ER function and promote ER
loss when overexpressed in ER-positive breast
cancer cells. In our own laboratory, we have
shown that constitutive upregulation of MEK1
in MCF-7 cells leads to a substantial increase in
ERK1/2 MAP kinase activation, decreased
ER level, and marked loss of expression of the
ER-regulated gene progesterone receptor
(PR) (RA McClelland, unpublished observa-
tions). Similarly, El-Ashry and colleagues39,40

have noted precipitous falls in ER mRNA and
protein following transfection of constitutively
active HER2, MEK1, Raf1 or ligand-stimulated
EGFR into MCF-7 cells, all of which hyperacti-
vate ERK1/2 MAPK. There is a parallel loss of
estrogen-mediated gene expression and a
marked suppression of activity of ERE-reporter
gene constructs in these transient transfection
experiments which is not overcome by estra-
diol treatment. Increased ERK1/2 activity has
also been reported to mediate hypoxia-
induced ER downregulation, and ERK7 has
been shown to regulate hormone responsiveness

in breast cells by controlling the rate of ERα
degradation.41,42 Holloway et al43 later demon-
strated that hyperactivated ERK1/2 MAPK is
able to downregulate ER via substrates includ-
ing the transcription factor nuclear factor
kappa B (NFκB), which is markedly increased
in activity in the various transfection models
and is inhibited by abrogating ERK1/2 MAPK
signaling.

Estrogens stimulate positive elements
of growth factor signaling pathways,
which may facilitate extracellular
signal-regulated kinases 1 and 2
mitogen-activated protein kinase-directed
cell proliferation 

Genomic mechanisms

Classically, the ER functions as a transcription
factor within the nucleus, and the ability
of estrogen/antiestrogens to regulate gene
expression has been extensively investigated in
experimental models of human breast cancer
both in vitro and in vivo. Based on these studies,
it is becoming increasingly evident that estro-
gens can promote the autocrine expression of
growth factor signaling pathway elements
(Figure 10.2, 2a)44,45 – notably components of
the EGFR and insulin-like growth factor recep-
tor (IGF-1R) pathways – in estrogen-responsive
and -dependent human breast cancer cell
lines.46–48 In the latter instance, the IGF-1R has
also been shown to be activated by estrogen,
subsequently recruiting downstream signaling
components, notably including insulin receptor
substrate-1 (IRS-1), which in turn may be estro-
genregulated.46,49 Such actions, which are often
antagonized by antiestrogens, could signifi-
cantly supplement the cellular growth responses
directly primed by estrogens.44,45,48

Nongenomic mechanisms

In addition to its classic genomic actions,
recent evidence suggests that estrogen can also
mediate rapid, nongenomic signaling events
through binding to ER localized at the cell
membrane.50 A small pool of ER has been
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shown to be tethered to the plasma membrane
through either binding to the lipid raft pro-
teins caveolin-1 and flotillin or complexing
with a range of membrane-associated signal
transduction proteins such as growth factor
receptors and G proteins.51 In breast cancer
cells, signaling via membrane ER, or membrane-
initiated steroid signaling (MISS), has been
shown to involve the coupling of ER with
EGFR, HER2, IGF-1R and SRC, providing
important mitogenic signals to epithelial cells
through the subsequent recruitment and
activation of downstream p38 and ERK1/2
MAP kinase pathways (Figure 10.2, 2b).50,51

Interestingly, MISS has also been shown to sub-
sequently impact on ER transcriptional activity
through MAP kinase-mediated phosphoryla-
tion of nuclear ER and its associated coactiva-
tor AIB-1 in human epidermal growth factor
receptor 2 (HER2)-overexpressing cells, pro-
viding an integrated genomic/nongenomic
signaling network which can mediate both
acute and long-term actions of estrogen.51,52

Estrogens inhibit negative elements of 
growth factor signaling pathways 

As well as the positive influences exerted by
estrogens on growth factor signaling pathways
detailed above, it is notable that in parallel
they diminish (while antiestrogens induce) the
expression of the growth inhibitory factor
TGFβ in several estrogen-responsive human
breast cancer cell lines, possibly via activation
of the p38 pathway (Figure 10.2, 3).53

Estrogens thus serve to inhibit the expression
of a factor, which can act through the p38/JNK
pathways, to induce programed cell death.54,55

Additionally, however, it is of particular sig-
nificance that estrogens have been reported
to inhibit expression of tyrosine phosphatases
in ER-positive breast cancer cells to increase
growth factor mitogenic activity, while both
steroidal and nonsteroidal antiestrogens
increase phosphatase activity.56,57 Tamoxifen,
for example, inhibits the mitogenic activity of
EGF by promoting significant dephosphoryla-
tion of EGFR, an effect that reduces MAP

kinase signaling and is believed to be ER
mediated.56

The estrogen receptor interacts with
growth factor-induced nuclear
transcription factors, coactivators/
corepressors, and additional proteins to
target a diversity of response elements 

An important feature of growth factor signal-
ing is its potential to activate several profiles of
nuclear transcription factors, which subse-
quently serve to promote the expression of
genes participating in a diversity of endpoints,
including cell cycle progression (Figure 10.2,
4). For example, as stated previously, in addi-
tion to its phosphorylation of the ER protein,
growth factor-induced MAP kinase (ERK1/2)
directly activates Elk-1/p62TCF.58 This latter
transcription factor subsequently forms a ternary
complex with p67SRF (serum response factor)
and primes Fos expression via the c-fos serum
response element.58 Similarly, JNK phosphory-
lates the c-Jun protein which subsequently het-
erodimerises with Fos.9,17 The resultant
complex, AP-1, is of central importance since it
directly targets the 12-O-tetradecanoyl-phor-
bol-13 acetate-responsive element (TPA-RE), a
sequence found in the promoters of many
genes involved in a plethora of cellular end-
points, including proliferation and survival.59

In light of this, it has been reported that
estrogens can significantly enhance growth
factor induced AP-1 activity in hormone-
sensitive breast cancer cells.60 This feature is
believed to be a consequence of productive
protein/protein interactions between the
estrogen receptor and the AP-1 complex,22 a
phenomenon also demonstrated to occur
between ER and other transcription factors
such as SP-1.61 Thus, ER appears able to acti-
vate genes containing AP-1 sites in their pro-
moters,62 providing a mechanism whereby ER
signaling may be markedly diversified. Initial
studies suggested that antiestrogens antago-
nized growth factor-induced AP-1 activity, with
maximal inhibition by pure antiestrogens.60 In
contrast to the above, ER may repress the
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activity of the transcription factor NFκB,63

which regulates expression of many cytokines
and growth factors.64

Finally, it should be remembered that
ER/ERE-mediated gene transcription is also
significantly enhanced by the recruitment
of several coactivators and/or by overcoming
the effects of corepressor proteins. Indeed,
ERK1/2 and p38 MAP kinase-mediated serine
phosphorylation of coactivators such as SRC-
1, GRIP1 and AIB1, and the corepressor
SMRT, has been shown to regulate their abil-
ity to associate with ERα and influence its
transcriptional activity.65–69 Additional pro-
teins also under growth factor/MAP kinase
regulation have been show to interact with the
ER, including the cell cycle protein cyclin D1
and the orphan member of the nuclear recep-
tor superfamily, the estrogen-related receptor
alpha (ERRalpha).70,71 Cyclin D1 can activate
ER by direct binding, as well as by recruiting
coactivators of the SRC-1 family to the ER,70

whilst ERRalpha has been shown to compete
directly with ER, and consequently repress
transcriptional activity via this receptor.71

Steroid hormone and growth factor 
signaling pathways influence common 
growth regulatory genes 

In order for cells to proliferate, they initially
need to be recruited into the cell cycle and
then be induced to progress through it. These
outcomes are orchestrated by at least two
series of events, which can be jointly influ-
enced by steroid hormone and growth factor-
directed MAP kinase signaling pathways:72

firstly, the induction of intermediate early
response genes, such as c-fos,73 c-jun,73,74 and
c-myc;72,75 and secondly, the regulation of G1
cyclins (e.g. cyclin D1), and their partner
kinases and inhibitors which are involved in
restriction point control.72,76 Joint activation of
these pathways by estrogens and growth fac-
tor-induced MAP kinase would, at a mini-
mum, reinforce mitogenic signals to
responsive cells, and might even result in syn-
ergistic interactions between overlapping ele-
ments (Figure 10.2, 5). 

MITOGEN-ACTIVATED PROTEIN
KINASE AND BREAST CANCER 
MODELS OF ENDOCRINE
RESPONSIVE AND
UNRESPONSIVE DISEASE

Importantly, in the archetypal endocrine res -
ponsive breast cancer cell line MCF-7, growth
factor signaling leads to increased MAP kinase
activity, which appears critical for their growth,
since substantial growth inhibition is achieved
with the MEK1 inhibitor PD098059. Signi -
ficantly, however, the increases in growth
factor-induced MAP kinase activity, which fac  -
ilitate the productive crosstalk with ER signal-
ing described above, are only short-lived due to
a highly efficient negative feedback of phos -
phory lation of these enzymes.7 Such a negative-
feedback system stems not only from
phos  phatases effectively targeting MAP kinases,
but additionally from distinct nonaberrant
expression patterns of growth factor receptors
and intracellular signaling elements compris-
ing the network upstream of MAP kinase acti-
vation.77 This serves to tailor input signals to
the precise growth requirements of the cells
and maintain the modest levels of prolifera-
tion which are characteristic of endocrine
responsive disease. 

In contrast to the above, in several instances
elevated activation of ERK1/2 MAP kinase
and upstream regulators of this pathway have
been associated with the more aggressive
growth of de novo and acquired endocrine
resistant cells.40,44,45,52,78–83 Significantly, within
our in-house breast cancer cell models of
acquired resistance to tamoxifen and faslodex,78,79

not only was PD098059 shown to be a highly
effective inhibitor of the growth of the anti-
hormone-resistant cells, but arrest of cell pro-
liferation was also achieved with ZD1839, an
EGFR selective tyrosine kinase inhibitor, and
herceptin, an inhibitor of c-erbB2.78,79 Such
data indicate that these erbB receptors are
direct upstream regulators of MAP kinase-
induced growth regulation in these resistant
cell lines. erbB receptors do not appear to be
the only regulators of MAP kinase activity in
tamoxifen resistance, as Cui et al84 have
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reported that reduced activity of MAP kinase
phosphatase 3 (MKP3), a negative regulator
of ERK1/2 MAP kinase, may also play a role in
the generation of the acquired tamoxifen-
resistant phenotype. More recently, activation
of the p38 signaling pathway has also been
implicated in endocrine resistance, with
enhanced levels of phosphorylated p38 being
observed in a xenograft model of acquired
tamoxifen-resistant MCF-7 cells.85

In addition to directly driving cell growth,
we have also demonstrated that the increased
EGFR/HER2/ERK1/2 MAP kinase signaling
observed in our tamoxifen-resistant variant
can efficiently phosphorylate serine 118 within
the AF-1 domain of ER.86 It is possible that
such ligand-independent activation of ER may
play a role in tamoxifen resistance, as cell lines
resistant to this antiestrogen, in common with
their clinical counterparts, continue to express
ER at an equivalent level to that observed in
the parental cell line.87–91 Indeed, increased ER
phosphorylation has been reported in breast
cancer cell lines resistant to tamoxifen and
long-term estrogen deprivation,92–96 and more
recently in ovariectomized mice bearing
tumor xenografts from aromatase-transfected
MCF-7 cells.97 This MAP kinase-dependent
phosphorylation of ER allows recruitment of
several AF-1 coactivators, such as p68 RNA
helicase, and subsequent reactivation of ER as
a nuclear transcription factor, resulting in
expression of detectable levels of the estrogen
regulated genes, in particular amphiregulin,
in our tamoxifen-resistant cell line.86 Although
the temporal sequence of these events remains
to be established during the development of
tamoxifen resistance, we have postulated that
EGFR/MAP kinase/ER-driven increases in
expression of amphiregulin may serve to estab-
lish a self-propagating autocrine signaling
loop, allowing the emergence and mainte-
nance of efficient EGFR/MAP kinase-
promoted resistant growth.86 It should also be
noted that, as mentioned previously, MAP
kinase signaling can directly promote phos-
phorylation of ER coactivators, which can
result in their increased nuclear localization
and enhance their impact on ER function.65–69

Indeed, overexpression of the coactivator
AIB1 has been shown to correlate with resis-
tance to tamoxifen in breast cancer patients,
and EGFR/HER2/ERK1/2 MAP kinase-
dependent phosphorylation of this coactivator
has also been proposed to mediate tamoxifen
resistance in HER2 overexpressing MCF-7
cells.52,94

Targeting the ER with the pure antiestro-
gen faslodex, which acts by promoting ERα
degradation to deplete ERα protein expres-
sion,1,98,99 can effectively interrupt the
autocrine signaling loop established in our
tamoxifen-resistant cell line, reducing activa-
tion of EGFR, c-erbB2 and MAP kinase, and
potently inhibiting cell growth.87 However,
exposure of these cells to exogenous EGF lig-
ands not only activates EGFR, c-erbB2 and
ERK1/2 MAP kinase, but also supports sub-
stantial tumor cell growth in the presence of
faslodex. Thus, strengthening the EGFR path-
way it appears able to entirely circumvent the
catastrophic effects of this antiestrogen on the
ER protein in such cells.87 EGFR ligand-
treated cells are thus refractory to the growth
inhibitory effects of both tamoxifen and
faslodex (i.e. complete endocrine insensitiv-
ity), data which certainly implies that the pri-
mary growth regulatory role for ER in the
tamoxifen-resistant cells is to maintain the
efficiency of EGFR signaling. In agreement
with these findings, it has recently been
reported that exogenous treatment of breast
cancer cells with either fibroblast growth fac-
tor-1, heregulin beta-1 or vascular endothelial
growth factor, and subsequent activation of
ERK1/2 MAP kinase signaling, can similarly
overcome the growth inhibitory actions of
faslodex.100,101 In this context, it is also of con-
siderable interest that Oh et al39 have demon-
strated that high levels of constitutive Raf
kinase activity, leading to hyperactivation of
MAP kinase, imparts MCF-7 cells with an abil-
ity to grow in the absence of estrogen. Such
cells have lost their ERs and showed no activa-
tion of transfected EREs reporter gene con-
structs. Importantly, this effect was abrogated
by inhibiting MAP kinase, thus restoring ER
expression.
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Recently, Yue et al102 have reported that ERs
can also lie upstream of MAP kinase signaling
in cell models of acquired endocrine resis-
tance. They have shown that acquisition of
resistance to tamoxifen and long-term estrogen
deprivation in MCF-7 cells is associated with an
enhanced nongenomic effect of estrogen on
MAP kinase activity, which results from an
increased association of ERs with EGFR/IGF-
1R at the plasma membrane. In the tamoxifen-
resistant variant, both tamoxifen and estrogen
were found to act as an agonist on membrane
ER to elicit MAP kinase activity, paralleling simi -
lar findings in HER2-overexpressing MCF-7
cells.52,94,102

CLINICAL ASSOCIATIONS

Extracellular signal-regulated kinases 1
and 2 mitogen-activated protein

Our previous studies, using antibodies raised
to the dually phosphorylated pTEpY region
within the catalytic core of the active form of
ERK1 and ERK2 MAP kinase, are supportive
of a pivotal role for exaggerated ERK1/2 MAP
kinase activation (pMAP kinase) in ER-positive
and -negative endocrine-resistant tumor
growth.103 Immunocytochemistry using such
antibodies generated heterogeneous nuclear
immunostaining for pMAP kinase within for-
malin-fixed, paraffin-embedded human
breast tumor specimens (Figure 10.3), and
two distinct subgroups of patients were readily
identifiable based on the resultant staining. 

The first group of patients demonstrated
very low pMAP kinase. Many such patients

exhibited objective responses (i.e. complete
(CR) or partial (PR) responses) to tamoxifen
as measured at 6 months after initiation
of antihormonal therapy. Responses were of
extended duration with a longer patient sur-
vival, as measured from the initiation of
endocrine therapy. These low levels of pMAP
kinase may be critical to the growth of such
tumors since, using sequential tamoxifen-
treated samples obtained from primary
elderly breast cancer patients, we have been
able to detect further decreases in pMAP
kinase in parallel with the clinical tamoxifen
response profile. Moreover, as stated above,
we have demonstrated some cell growth inhi-
bition of the endocrine responsive breast can-
cer line MCF-7 with the MEK1 inhibitor
PD098059, despite only minimal activation of
ERK1/2 MAP kinase. Such data again suggest
that the diminished pMAP kinase levels
detectable in endocrine responsive disease
may be reflective of highly efficient regulation
of enzyme phosphorylation. Some link has
been made between pMAP kinase regulation
and the IGF-1R pathway in ER-positive well-
differentiated tumors, although it should be
noted that there was some conflict with our
own observations since higher pMAP kinase
levels were reported for this patient group.104

The second patient subgroup in our study
(72% of patients) exhibited quite substantial
pMAP kinase. Such patients invariably exhib-
ited de novo endocrine resistant (i.e. progres-
sive) disease, or at best disease stabilization.
There was a poorer survival from initiation of
endocrine therapy (by univariate analysis) and
a shortened time to disease relapse on such

Figure 10.3 Activation of mitogen-activated protein kinase family members in clinical breast cancer: (a) phosphorylated
extracellular signal regulated kinases 1 and 2; (b) phosphorylated c-jun N-terminal kinases; (c) phosphorylated p38.
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treatment (by univariate and multivariate
analysis103). Biochemical studies using tissue
homogenates confirm that hyperexpression
and anomalous MAP kinase activation is a fea-
ture of a proportion of breast neoplasms.105–108

Furthermore, a biochemical study by Mueller
et al109 reported a relationship between ele-
vated MAP kinase activity and shortened dis-
ease-free survival in primary breast cancer,
which is complementary to our own data.
However, such observations remain controver-
sial since links between increased pMAP kinase
and good outcome have also been reported.110

The reasons underlying such variations in
results remain unknown; however, localization
appears critical to the observations since, while
nuclear ERK correlates with shortened patient
survival, cytoplasmic staining is favorable.111

What mechanisms might underlie any exag-
geration of pMAP kinase in poorer prognosis de
novo endocrine resistant clinical breast cancer?
Mutation, overexpression or constitutive activity
of ERK1/2 MAP kinase,105,106,108,112 or indeed of
any of the key regulators identified in cell mod-
els of endocrine resisitance such as growth fac-
tor receptors (EGFR, HER2) and phosphatases
(MKP3), might feasibly explain this phenome-
non. Indeed, an increasing number of anom-
alies in erbB/ERK1/2 MAP kinase signaling
have been identified within such tumors.113

Associations have been made between endocrine
independence and exaggeration of EGFR and
HER2,113 and very recent studies have shown
that activation of HER2 correlates with pMAP
kinase (and also with the alternative kinase
p38114), while inhibition of EGFR and/or HER2
with agents such as lapatinib and gefitinib can
deplete pMAP kinase, and thereby proliferation
in breast cancer, suggesting interlinked path-
ways.115 It is also interesting that elevated levels
and/or activity of many additional intracellular
molecules impinging on the ERK 1/2 MAP
kinase signaling pathway (including pp60c-src,
Grb2, RHAMM, Ras, Raf, protein kinase C)
have been observed in malignant breast cells,
commonly associating with a poorer patient
prognosis.106,116–119

Interestingly, we noted that increased pMAP
kinase was particularly common in the poorer

prognosis, endocrine-unresponsive ER-negative
patient subgroup.103 Such tumors are reported
to employ elevated EGFR signaling for their
expansion.44,45,113,120,121 Interestingly, these find-
ings parallel the evidence derived from cell
models implicating MAP kinase signaling in
driving ER negativity. In these tumors, we
observed associations between pMAP kinase,
EGFR positivity, and the activated AP-1 com-
ponent c-Jun,122 data implicating pMAP kinase
as a key intermediary of elevated EGFR signal-
ing which impinges on AP-1-mediated events,
and thereby growth of ER-negative disease.
Our in vivo observations are complemented by
in vitro studies, which have similarly demon-
strated enhanced tyrosine phosphorylation,74

and marked ERK1/2 MAP kinase activation
in ER-negative MDA-MB-231 breast cancer
cells.123

Importantly, however, we noted that associ-
ations between increased pMAP kinase and
hormone refractory disease in the clinic were
also retained within ER-positive patients.103

Multivariate analysis confirmed significant
associations with earlier relapse on endocrine
therapy and poorer survival time in these
patients. Further studies have also linked
increased MAPK activity and impaired tamoxi -
fen response in ER-positive patients,124

although, as stated above, observations link-
ing MAPK activation to adverse outcome
remain controversial. Our clinical data are
complimented by many in vitro observations
equating enhanced MAP kinase activity with
the acquisition of steroid hormone indepen-
dence or antihormone resistance by ER-
positive breast cancer cells, including our own
panel of endocrine resistant MCF-7 sub-
lines.78,79 Indeed, we have recently observed
increased pMAP kinase at the time of acquisi-
tion of tamoxifen resistance and disease
relapse in ER-positive, initially responsive,
clinical disease. In total, these data offer
considerable support of a central role for
exaggerated pMAP kinase in sustaining anti-
hormonal-resistant ER-positive tumor growth.
As observed in the model systems, there is
also emerging clinical evidence that pMAP
kinase may be able to promote ER activity in
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ER-positive breast cancer. Prominent activation
of ER serine 118 has been reported to corre-
late with more differentiated disease and bet-
ter clinical outcome on tamoxifen.113,125,126

However, such ER activity is also readily
detectable in ER-positive de novo and acquired
tamoxifen-resistant breast cancer (moreover
at elevated levels in relapse samples).
Interestingly, both increased EGFR and pMAP
kinase correlate with phosphorylation of ser-
ine 118 ER in clinical disease,113,126 while Poly -
chronis et al127 observed that neoadjuvant
gefi  tinib treatment of ER-positive/EGFR-posi tive
disease depletes both pMAP kinase and serine
118 ER phosphorylation. In total, these data
suggest EGFR/MAP kinase regulation of ER
activation may be important to tamoxifen-
resistant phenotypes in vivo as in breast can-
cer cell models.113,125 Surprisingly, our study
showed that there was a lack of direct correla-
tion between pMAP kinase and expression of
a panel of “classically” estrogen regulated
genes (i.e. PgR, pS2 and bcl-2), although
some association was noted between TGFα, a
known estrogen responsive gene, and pMAP
kinase.103 These data indicate that the mecha-
nisms involving pMAP kinase priming of ER
activity are far from simple, and may selec-
tively influence specific subsets of estrogen-
regulated genes more integral in tumor
growth processes. Moreover, while initially
entering into positive crosstalk with ER, at its
most extreme, hyperactivation of MAP kinase
may ultimately act to inhibit ER expression,
thereby producing completely endocrine
refractory growth.

The “stress-activated” mitogen-activated 
protein kinases JNK and p38

As stated above, significant influences on ER
and AP-1 signaling may also occur following
phosphorylation of the SAPK members Jun
kinase (JNK) and p38. While the endpoints of
such signaling are likely to be as diverse as for
ERK1/2 MAP kinase, as stated above, signifi-
cant in vitro associations with negative growth
regulation in breast cancer cells have been
reported for JNK and p38.16,17,53 If represented

in clinical breast cancer, therefore, JNK and
p38 signaling would perhaps be predicted to
substantially impact on patient prognosis and
endocrine response in a manner diametrically
opposed to pMAP kinase. Again, our studies
immunocytochemically employing phospho -
specific antibodies for JNK and p38 in clinical
breast cancer have proved interesting in this
regard.128 We noted that nuclear activation of
JNK or p38 was not uncommon within clinical
breast cancer (Figure 10.3). Significant
expression of activated p38 and JNK appeared
to confer an advantage on duration of survival
and endocrine response, an observation in
marked contrast to our observations with
pMAP kinase. This was particularly apparent
within tumors where the relationship between
response to endocrine therapy and elevated
pMAP kinase activation proved imperfect.
Thus, approximately 15% of objective respon-
ders with elevated pMAP kinase activation in
their tumors coexpressed activated JNK or
p38.128 These data suggest that activation of
p38 and JNK may serve as a “counterbalance”
in some breast cancers for the undesirable
positive influences of pMAP kinase, thereby
facilitating the growth inhibitory activity of
endocrine agents.129

However, our observations with SAPKs in
clinical breast cancer remain controversial.
Paradoxically, increases in both p38 and JNK
activity have also been associated with disease
progression with activity elevated in effusions
compared with primary tumors and lymph
node metastases, and p38 relating to reduced
overall survival130 and to shortened progres-
sion-free survival in lymph node-positive
breast cancer.131 Moreover, our preliminary
studies also noted some increases in activity of
both JNK and p38 at the time of disease
relapse of ER-positive endocrine responsive
clinical breast cancer when treated with tamoxi -
fen. Increased JNK activity has similarly been
measured by others in acquired tamoxifen-
resistant clinical breast cancer,132,133 while
Gutierrez et al85 reported that some ER-posi-
tive, acquired tamoxifen-resistant patients (and
xenografts) show increased p38 activation along-
side modest gains in HER2 amplification. The
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latter study also revealed strong correlations
between ER, p38 and ERK, data cumulatively
implying crosstalk between ER, HER2, p38
(and ERK) which contributes to tamoxifen-
resistant growth. Indeed, evidence of such
crosstalk has been demonstrated in a
xenograft model of acquired tamoxifen-resis-
tant MCF-7 cells.85 It is feasible that a positive
role for stress-activated kinases such as p38 in
driving clinical-resistant disease may occur via
their regulation of AP-1 activity, which can
also be increased in such material122,132,133 or
perhaps via activation of ER or its coactivators
to enhance agonism of the tamoxifen–ER
complex.85

THE FUTURE OF MITOGEN-
ACTIVATED PROTEIN KINASE
AS A THERAPEUTIC TARGET AND
PROGNOSTIC MARKER 

The clinical data described above regarding
activation of ERK1/2 MAP kinase and the
SAPKs JNK and p38 suggest that these signal-
ing elements have prognostic potential.
However, more definitive studies with greater
access to appropriate clinical sample sets,
including samples taken during response and
at relapse, are required to confirm these initial
findings. It should also be noted that this data
may also have important therapeutic implica-
tions. For example, breast tumors derived from
patients exhibiting de novo endocrine resis-
tance and an unfavorable prognosis may be
candidates for challenge with pharmacological
agents disruptive of ERK1/2 MAP kinase sig-
naling. The recent development of inhibitors
of MEK1 activation,134,135 as well as further
agents disruptive of the upstream erbB signal-
ing network, notably including tyrosine kinase
inhibitors such as “ZD1839/Iressa” and tar-
geted antibody therapies such as Herceptin,136

could be valuable additions to the pharmaco-
logical armory appropriate in future manage-
ment of the disease. Moreover, our observation
that coexpression of activated JNK or p38 in
clinical breast cancer is associated with a per-
turbation of the relationship between phos-
phorylated ERK 1/2 MAP kinase and poor

outlook may ultimately provide some rationale
for therapeutic manipulation of SAPKs to
dampen any undesirable impact of elevated
ERK 1/2 MAP kinase signaling. However, it
should also be noted that the identification of
a role for p38 and JNK in acquired tamoxifen
resistance85,132,133 also identifies them, alongside
ERK1/2 MAP kinase, as potential therapeutic
targets for the treatment of this condition.
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INTRODUCTION

The goal of medicine has been, since its
inception, to provide treatment recommenda-
tions tailored to the illness of an individual.
Some of the earliest medical writings clearly
document that different empirical therapies
were recommended for different constella-
tions of symptoms. For example, the Ebers’
papyrus written in 1500BC recommends that
“… for a person who suffers from abdominal
obstruction and you find (on physical exami-
nation) that it goes-and-comes under your
fingers like oil-in-tube, then prepare for
him fruit-of-the-dompalm, dissolve in semen,
crush and cook in oil and honey.” On the
other hand, if a person suffers from abdomi-
nal obstruction and you find that “… his stom-
ach is swollen and his chest asthmatic, then
make for him wormwood, elderberries, sebesten,
sesa chips, crush and cook in beer…”.1 Thus,
personalized medicine was born. The subse-
quent history of medicine is intricately inter-
twined with technological developments in
diagnostic methods which aim to define dis-
ease ever more narrowly and predict clinical
outcome with or without particular therapies
with increasing precision. 

Current medical decision-making takes
place in a four-dimensional decision space
(Figure 11.1). Physicians and patients need to
consider: the clinical outcome in the absence
of treatment (i.e. prognosis); the probability
of benefit from therapy; and the risks of

adverse events from an intervention. An
important fourth dimension is patient prefer-
ence. A person’s willingness to accept therapy
is influenced by her/his risk tolerance for
adverse events from the disease and from the
treatment.2 It is assumed that the more accu-
rate the prognostic and response predictions
and toxicity estimates are then the more per-
sonalized treatment recommendation can be
made for an individual.

There are several diagnostic tools which
are commonly used in the context of breast
cancer to gauge patient preference, and to
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Figure 11.1 Three-dimensional decision space of pre-
dicted prognosis, predicted response to therapy and risk
of toxicity/patient preference. Treatment can be equally
appropriate because of high risk of relapse, even if the
predicted benefit is modest, or because of modest risk of
relapse but high likelihood of benefit from therapy.
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estimate the risk of recurrence and the probability
of benefit from endocrine or trastuzumab
therapies (Table 11.1). Patient preferences
are elicited through the medical interview.
The risk of adverse events is estimated, rather
subjectively, based on age, comorbid illnesses
and results from simple organ function tests.
The risk of recurrence is primarily deter-
mined by lymph node status, tumor size, and
histological grade. Estrogen receptor (ER)
and progesterone receptor (PR) immunohis-
tochemistry results are used to define the sub-
set of individuals who may benefit from
endocrine therapy, and human epidermal
growth factor receptor 2 (HER2) immunohis-
tochemistry or fluorescent in situ hybridiza-
tion (FISH) results are used to select patients
for trastuzumab treatment. Several of these
clinical and pathological features can be com-
bined into a practically useful and validated
multivariable outcome prediction model – see
Adjuvant Online at www.adjuvantonline.com.
This freely available web-based tool estimates
the risk of recurrence (or death) with locore-
gional therapy alone and with various systemic
adjuvant treatments, including endocrine
therapy and/or chemotherapy.3

However, current prediction models are
suboptimal, individual predictive variables
have limited accuracy, and the actual clinical
outcomes remain heterogeneous in any given
prognostic group. EC and HER2 status are
helpful to identify patients who are not eligible

for endocrine or trastuzumab therapies by
virtue of their high negative predictive values
and high sensitivities. However, only a minority
of ER- or HER2-positive patients respond to
receptor-targeted therapy. The positive predic-
tive values of these tests are <50%. Currently,
there are no accepted molecular predictors of
response to various chemotherapy drugs. We
also have limited ability to predict adverse
events despite the relatively high toxicity and
modest activity of cytotoxic drugs. These limi-
tations have driven biomarker research to
develop more accurate molecular predictors
of clinical outcome.

NOVEL MOLECULAR TESTS IN
THE CLINIC

Breast cancer is a clinically heterogeneous
disease and it is generally accepted that the
different clinical course of patients with histo-
logically similar tumors is due to molecular
differences among cancers. Therefore, detailed
molecular analysis of the cancer could yield
information that may improve clinical out-
come prediction. It is also increasingly recog-
nized that molecules which determine the
behavior of neoplastic cells act in concert and
form complex regulatory networks. Any indi-
vidual gene may only contain limited infor-
mation about the activity of the entire
network. It is reasonable to hypothesize that
examining many genes simultaneously will
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Table 11.1 Historical tools to aid medical decision-making in breast cancer

Variable Method to elicit outcome estimates

Patient preferences Medical interview

Risk of adverse events Medical history
Simple organ function tests (BUN, creatinin, liver enzymes, and
complete blood count)
Electrocardiogram, echocardiogram

Prognosis Tumor, node, metastasis staging system (TNM) stage Histologic grade
Adjuvant Online software

Probability of benefit from therapy Estrogen receptor, progesterone receptor immunohistochemistry*

HER2 fluorescent in situ hybridization or immunohistochemistry†

*For endocrine therapy.
† For trastuzumab therapy.
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yield more accurate information about the
biological behavior of the tumor. High-
throughput genomic technologies, including
multiplex reverse transcriptave-polymerase
chain reaction (RT-PCR) and DNA microar-
rays, allow investigators to directly test this
hypothesis.4

Recently, several novel multigene molecular
diagnostic tests became commercially avail-
able, or are near to commercial introduction,
in the USA and Europe (Table 11.2). The rou-
tine adoption of these tests would be straight-
forward and ubiquitous if they had perfect
sensitivity, specificity and 100% positive and
negative predictive values. Naturally, no test
ever meets such high performance standards;
therefore, the pressing question is, in what
clinical situations do these tests provide added
value? For many patients with newly diag-
nosed breast cancer, existing clinical and
pathologic markers may provide sufficient
information to make an appropriate treat-
ment recommendation. For example, most
patients with positive lymph nodes represent a
high enough risk for recurrence that recom-
mendations for adjuvant chemotherapy are
appropriate. However, some of these individ -
uals are frail, have multiple comorbid condi-
tions, and may have ER-positive disease. So,
a more precise prediction of sensitivity to
chemotherapy and endocrine therapy could
help to make the best treatment recommen-
dation. Similarly, a substantial minority of
lymph node-negative patients relapse despite
adequate locoregional therapy, and better
prognostic predictions could help to iden-
tify those who could benefit from systemic

chemotherapy. It would be helpful in this
situation as well to understand endocrine
and chemotherapy sensitivity separately in
order to recommend the most appropriate
treatment.

PREDICTION OF PROGNOSIS
IN NODE-NEGATIVE BREAST
CANCER

Prognostic models for node-negative breast
cancer that rely on tumor size and histological
grade are useful but imperfect. At least two
distinct gene-expression profiling-based tests
were recently developed which may improve
prognostic prediction for these patients.
One of these – MammaprintTM (Agendia
Inc, Amsterdam, the Netherlands) – was
recently cleared by the US Food and Drug
Administration (FDA) to aid prognostic pre-
diction in node-negative breast cancer, and it
may become available commercially shortly.
This assay measures the expression of 70
genes and calculates a prognostic score which
can be used to categorize patients into good
or poor prognostic risk groups. This test was
evaluated on two separate cohorts of patients
that received no systemic adjuvant therapy.
The first cohort included 295 patients and
showed that those with the good prognosis
gene signature had 95% (±2 % standard error
(SE)) and 85% (±4% SE) distant metastasis-
free survival at 5 and 10 years, respectively,
compared to 60% (±4% SE) and 50% (±4.5%
SE) in the poor prognostic group.5 A second
validation study (n = 307) confirmed these
findings, and showed that patients with the
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Table 11.2  Examples of emerging molecular diagnostic tests to aid decision-making in breast cancer

Function Test Commercial availability for diagnostic use in the US

Prognostic tests MammaprintTM 5,6 No, FDA cleared in 2007
76-gene signature7,8 No
5-antibody, MammostratTM 13 No

Probability of benefit Oncotype DxTM 9–11 Yes
from endocrine therapy 200-gene signature13 No

Probability of benefit 30-gene signature17 No
from chemotherapy
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good prognosis signature had 90% (85–96%
confidence interval (CI) 95%) distant meta stasis-
free survival at 10 years compared to 71%
(65–78%) in the poor prognosis group.6

Importantly, the gene signature could restrat-
ify patients within clinical risk categories
defined by the Adjuvant Online program. In
other words, some of the clinically low-risk
patients were correctly recategorized as high
risk based on their gene signatures, and some
clinically high-risk patients were correctly pre-
dicted to be low risk by the genomic test.

Other investigators also identified genes
which were associated with relapse in node-
negative breast cancer; markers were selected
separately from ER-negative and ER-positive
tumors, and were combined into a single 76-
gene prognostic signature (VDX2, Veridex
LLC, Warren, NJ, USA). This test was also eval-
uated on two separate cohorts of patients that
received no systemic adjuvant therapy and
were not included in the development of the
test. The first cohort included 180 patients,
and showed 5- and 10-year distant metastasis-
free survival rates of 96% (89–99%) and 94%
(83–98%), respectively, for the good progno-
sis group. The 5- and 10-year distant metasta-
sis-free survival rates were 74% (64–81%) and
65% (53–74%) for the poor prognosis group.7

A second independent validation of this 76-
gene signature included 198 node-negative
cases, and demonstrated again that the 5- and
10-year distant metastasis-free survival rates
were 98% (88–100%) and 94% (83–89%),
respectively, for the good prognosis group,
and 76% (68–82%) and 73% (65–79%) for
the poor prognosis group.8 In this instance too,
the gene signature could restratify patients
within clinical risk categories defined by the
Adjuvant Online program, and recurrence
hazard ratios remained similar after adjusting
for tumor grade, size and ER status.8

Both of these microarray-based assays pro-
vide prognostic prediction with moderately
high precision (see CI around outcome esti-
mates), and seem to have at least complementary
value to tumor size- and grade-based predic-
tions. However, what constitutes low enough
risk to forgo systemic adjuvant chemotherapy is

influenced not only by the absolute risk of
relapse but also by the risk of adverse events,
the probability of benefit from therapy, and
also by personal preferences. Many patients
seem to be willing to accept adjuvant chemother-
apy for rather small gains in survival.2 Molecular
prognostic markers may provide little clinical
value for these individuals because no predic-
tive test is accurate enough to completely rule
out the risk of relapse and some potential ben-
efit from adjuvant therapy. However, many
other patients are reluctant to accept the toxi -
cities, inconvenience and costs of chemother-
apy for small and uncertain benefit. For these
individuals, more precise prediction of risk of
recurrence and sensitivity to adjuvant therapy
with genomic tests can assist in making a more
informed decision.

SELECTION OF SYSTEMIC
ADJUVANT THERAPY FOR
ESTROGEN RECEPTOR-POSITIVE
BREAST CANCER

One of the most pressing questions for
patients with stage I–II ER-positive breast can-
cer is whether to take adjuvant endocrine
therapy alone or to also receive adjuvant
chemotherapy in addition to the endocrine
treatment. Recently, a novel multigene diag-
nostic assay, Oncotype Dx (Genomic Health
Inc, Redwood City, CA, USA), became com-
mercially available to assist decision-making in
this situation. This RT-PCR-based assay repre-
sents an important conceptual advance in
the diagnosis of ER-positive breast cancers.
Oncotype Dx measures the expression of 21
genes at the mRNA level from formalin-fixed
paraffin-embedded specimens. In addition to
ER mRNA, several downstream ER-regulated
genes are also measured which may contain
information on ER functionality. The assay
also quantifies HER2 expression and several
proliferation related genes, and combines
these into a genomic recurrence score. A semi-
nal study examined the correlation between
the Oncotype Dx recurrence score and distant
relapse in 668 ER-positive, node-negative,
tamoxifen-treated patients who were enrolled

142 PROGNOSTIC AND PREDICTIVE FACTORS IN BREAST CANCER

Walker-8050-11:Walker-8050-11.qxp 5/30/2008 6:32 PM Page 142



in the National Surgical Adjuvant Breast and
Bowel Project (NSABP) clinical trial B14.9

The 10-year distant recurrence rates were
6.8% (4–10%), 14.3% (8–20%) and 30.5%
(24–37%) for the low-, intermediate- and
high-risk categories, respectively, based on the
recurrence score (p <0.001). These results
suggest that ER-positive patients with a high
recurrence score may not be treated optimally
with 5 years of tamoxifen. Similar results were
observed in a community-based patient popu-
lation.10 In multivariate analysis, the genomic
test predicted relapse and overall survival
independently of age and tumor size, indicat-
ing an at least complementary value. 

The value of the recurrence score for predict-
ing benefit from adjuvant cyclophosphamide
methotrexate, 5-fluorouracil (CMF) chemo -
therapy in ER-positive, node-negative breast
cancers was also examined. A study that
included 651 patients who were enrolled in
the NSABP B20 randomized study showed
that a higher recurrence score was associated
with greater benefit from adjuvant CMF
chemotherapy when used in combination with
tamoxifen therapy.11 The absolute improve-
ment in 10-year distant recurrence-free sur-
vival was 28% (60% vs 88%) in patients with a
recurrence score >31, while there was no ben-
efit in patients with a recurrence score <18
(test for interaction p = 0.038). The hazard
ratio for distant recurrence after CMF
chemotherapy was 1.31 (0.46–3.78 CI 95%)
for patients with recurrence scores <18 and it
was 0.26 (0.13–0.53) for patients with scores
>31. These data indicate that a high recur-
rence score identifies a subset of women with
ER-positive and node-negative breast cancer
at high risk of recurrence despite 5 years of
tamoxifen therapy, and this risk can be
reduced with the administration of adjuvant
chemotherapy.

Oncotype Dx can be useful when the deci-
sion regarding adjuvant chemotherapy is not
straightforward based on routine clinical vari-
ables. However, some important caveats must
also be noted. Oncotype Dx is not appropriate
to risk stratify ER-negative patients because
all patients are categorized as high risk.12

The predictive performance of this test in
patients who receive aromatase inhibitor ther-
apy or more modern anthracycline- or taxane-
containing chemotherapy regimens remains
to be studied.12 In particular, the magnitude
of benefit that patients with a low or medium
recurrence score experience when treated
with third-generation adjuvant chemotherapy
regimens is unknown.

Other gene signatures are also emerging in
the literature which may in the future assist
selection of endocrine therapy or chemother-
apy for ER-positive breast cancers. A 200-
gene endocrine sensitivity index was recently
reported which could identify patients with
excellent survival after 5 years of tamoxifen
therapy. The same index had limited prognostic
value in the absence of endocrine therapy, indi-
cating a true predictive marker.13 An antibody-
based prognostic panel (MammostratTM,
Applied Genomics Inc, Burlingame, CA, USA)
is also currently being developed using samples
from the NSABP B14 and B20 studies to risk
stratify ER-positive patients, somewhat similar to
what can be accomplished by Oncotype Dx.14

EMERGING CHEMOTHERAPY
RESPONSE PREDICTORS

The clinical importance of predicting who will
and who will not respond to chemotherapy is
intuitively obvious. If a test could predict who
will respond to a given drug, the treatment
could be administered only to patients who
benefit, and others could avoid the unneces-
sary treatment and its toxicity. However, the
practical development of chemotherapy
response prediction tests poses several chal-
lenges. There are theoretical limits to the
accuracy of any response predictor which
measures the characteristics of the cancer
only. Host characteristics which are not easily
measured in cancer tissue, including the rate
of drug metabolism, can have an important
impact on response to therapy. Also, there is
considerable uncertainty as to what level of
predictive accuracy would be clinically useful.
In fact, different levels of predictive accuracy
may be required for different clinical situations.
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For instance, the clinical utility of a chemo -
therapy response prediction test that has 60%
positive predictive value (PPV; i.e. 60%
chance of response if the test is positive) and
80% negative predictive value (NPV; i.e. 20%
chance of response if the test is negative) will
depend not only on these test characteristics
but also on the availability and efficacy of
alternative treatment options, as well as the
frequency and severity of adverse effects, and
the risks of exposure to ineffective therapy (i.e.
rapid disease progression with life-threatening
complications). A test with the above perfor-
mance characteristics may be of limited value
in the palliative setting, when alternative treat-
ment options are limited and generally inef-
fective. Patients and physicians may want to
try a drug even if the expected response rate
is only 10% (well within the range of test nega -
tive cases), particularly if side-effects are
uncommon or tolerable. On the other hand,
in the setting of potentially curative therapy,
when multiple treatment options are avail-
able, a test with the same performance char-
acteristics may be helpful to select the best
regimen from the several treatment options.
In addition, a test developed to predict response
to a given treatment in previously untreated
patients may not predict response sufficiently
accurately when the same drug is used as
second- or third-line treatment. 

Considering these complexities, not surpris-
ingly many of the recent predictive marker
studies that employed high-throughput analy -
tical tools focused on the preoperative (neoad-
juvant) treatment setting in breast cancer.
Neoadjuvant chemotherapy provides a unique
opportunity to identify molecular predictors
of response to therapy. Pathologic complete
response (pCR) to chemotherapy indicates an
extremely chemotherapy-sensitive disease and
represents an early surrogate of long-term
benefit from therapy. Histological type, tumor
size, nuclear grade and ER status all influence
the probability of response to neoadjuvant
chemotherapy, and these clinical variables
can be combined into a multivariable model
to predict probability of pCR (http://www.
mdanderson.org/care_centers/breastcenter/

dIndex.cfm?pn=448442B2-3EA5-4BAC983100
76A9553E63).15 However, these clinical vari-
ables lack regimen-specific predictive value
and represent features of general chemother-
apy sensitivity. 

Several small studies provided “proof-of-
principle” that the gene expression profile of
cancers which are highly sensitive to chemother-
apy are different from tumors which are resis-
tant to treatment.16 The largest study so far
included 133 patients with stage I–III breast
cancer who all received preoperative weekly
paclitaxel and 5-fluorouracil, doxorubicin,
cyclophosphamide (T/FAC) chemotherapy.17

The first 82 cases were used to develop a multi-
gene signature predictive of pCR and the
remaining 52 cases were used to test the accu-
racy of the predictor. The overall pCR rate was
26% in both cohorts. A 30-gene predictor cor-
rectly identified all but one of the patients who
achieved pCR (12 of 13) and all but one of
those who had residual cancer (27 of 28) in the
validation set. It showed significantly higher
sensitivity (92% vs 61%) than a clinical variable-
based predictor including age, grade and ER
status. The high sensitivity indicates that the
predictor correctly identified almost all of the
patients (92%) who actually achieved pCR. The
PPV of the pharmacogenomic predictor was
52% (95% CI 30–73%); however, the lower
bound of the 95% CI did not overlap with the
26% pCR rate observed with this regimen in
unselected patients. This indicates that the pre-
dictor could define a patient population that is
more likely to achieve pCR than unselected
patients. The NPV of the test was also high,
96% (95% CI 82–100%), which indicates that
<5% of test-negative patients (i.e. predicted to
have residual disease) achieved pCR. These
performance statistics are similar, with regard
to the NPV and better with regard to PPV,
than those seen with ER immunohistochemistry
or HER2 gene amplification as predictive mark-
ers to endocrine or trastuzumab therapies,
respectively. However, to what extent this
genomic predictor of sensitivity is specific to
T/FAC therapy rather than being a generic
marker of chemotherapy sensitivity is yet to be
determined.
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WHEN IS A NEW DIAGNOSTIC
TEST READY FOR ROUTINE
CLINICAL USE?

One of the most commonly asked questions
about novel diagnostic tests is: When is it ready
for clinical use? Unlike drugs, where there are
clear regulatory milestones that need to be met
before a novel treatment is approved for clinical
use by the US FDA, the regulations which apply
to laboratory diagnostic assays is less uniform.
Currently, a novel diagnostic assay may become
available for clinical use through two distinct
mechanisms. One is a “diagnostic kit” manufac-
tured by a company and sold to end-users
(pathology laboratories) to perform the assay.
These types of diagnostic tests are regulated by
the FDA and require some level of approval
before marketing (www.fda.gov/cdrh). The sec-
ond route to the clinic is through the CLIA
(Clinical Laboratory Improvement Amendment
of 1988) certification process. CLIA can classify
tests based on its level of complexity. A test clas-
sified as “waived” is considered relatively simple,
requiring no medical background to analyze.
These tests can be administered in a doctor’s
office or even prescribed for home use. Other
CLIA classifications require that more complex
tests such as multigene assays be performed in
laboratories meeting CLIA certification stand -
ards. CLIA certified laboratories (private or
academic) can perform complex and new
diagnostic assays using reagents which are not
necessarily approved or regulated by the
FDA, but this may change in the future (see
www.fda.gov/OHRMS/DOCKETS/98fr/ch064
1.pdf). However, currently, when a company or
an academic group becomes convinced that its
favored test provides some clinical value it can
start offering it for clinical use through a CLIA
certified laboratory. This requires that the assay
is reproducible, stable over time, and the labo-
ratory must meet several other quality control
measures, including a clear sample and data
tracking process. Several of the prognostic/pre-
dictive tests discussed above are commercially
available through CLIA certified laboratories.

Irrespective of the regulatory requirements
that a test needs to meet before it is offered as

a test in the clinic, physicians must decide
what value the test provides in medical deci-
sion-making. It is important to consider that
even if a test is not indicated for every patient
with breast cancer, it could provide clinical
value for some. Many existing and well-accepted
diagnostic tests fall into this category. For
example, magnetic resonance imaging (MRI)
is not performed on all patients with newly
diagnosed breast cancer or with a suspicious
lump in the breast; however, it is a very useful
test for a subset of woman with these condi-
tions. Many of the emerging molecular prog-
nostic and predictive tests also fall into this
category. Sometimes decisions can be made
about risk of recurrence relatively easily based
on clinical characteristics of the disease and
the currently available moderately accurate mol-
ecular predictors add little further value.
Patient preference for aggressive therapy,
even if the risk of recurrence is low and par-
ticularly if the risk of adverse events from
treatment is modest (e.g. endocrine thera-
pies), may trump the value of any prognostic
marker that is currently available. However,
for many patients who are undecided, molec-
ular prognostic assays could assist in decision-
making. Similarly, tests which predict the
probability of response (with moderate accu-
racy) may be of limited value if the choice of
treatments is limited, or if a patient prefers to
take a particular treatment even if the proba-
bility of benefit is small. On the other hand,
when alternative treatment choices are avail-
able, predicting the probability of benefit
from a particular treatment, before or soon
after it is started, could be helpful. 

What is the minimum standard that a test
needs to meet before it could be considered
for clinical use? The assay needs to be techni-
cally robust and reproducible. The perfor-
mance characteristics of the test, including its
predictive values, for a clinically relevant out-
come need to be defined with reasonably nar-
row confidence intervals. If these criteria are
met, the test may be considered for clinical
use because it is assumed to be reliable and it
predicts a relevant clinical outcome with a
known degree of uncertainty. Therefore, in
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clinical situations when the prediction result
is expected to assist decision-making the assay
could be helpful. However, one would also
like to see proof that such “more informed”
medical decision-making actually results in
improved patient outcome (e.g. increased sur-
vival, better quality of life). To conduct such
studies to demonstrate clinical utility is time
consuming but important.

CONCLUSIONS

At least one novel genomic diagnostic test is now
available in the USA to estimate the prognosis of
ER-positive, lymph-node negative patients who
are to receive 5 years of tamoxifen therapy. This
test could help identify individuals who are at
low risk (or high risk) for recurrence with
endocrine therapy alone and could assist in rec-
ommending chemotherapy more appropriately
for ER-positive patients. Another genomic prog-
nostic assay was recently cleared by the FDA, and
it may help in refining prognostic estimates for
node-negative patients and could particularly be
helpful for stage I–II ER-negative patients who
are undecided about adjuvant chemotherapy.
This test requires fresh-frozen tissue for analysis.
The advent of multigene assays in the clinic also
offers a new opportunity to package multiple
prognostic and predictive tests into a single diag-
nostic product in the not too distant future
(Figure 11.2).

It is important to realize that no prospective
randomized studies have been completed to
demonstrate improved patient outcome with
the use of any of the new tests compared to
decision-making based on clinical parameters
only. Two such studies are currently under way
including the MINDACT trial in Europe that
tests MammaprintTM and the TAILORX study
in the USA that tests Oncotype DxTM. Survival
results from these studies will not be available
for several years. However, some forms of clini-
cal benefit from novel tests may be more sub-
tle than improvements in survival. It may be
argued that additional information which
helps patients (and physicians) feel more com -
fortable with a particular treatment recom-
mendation is of value on its own. 
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INTRODUCTION

p53 was first discovered in 1979 as a cellular
protein of approximately 53-kDa binding to
the large T antigen in cells transformed by
Simian Virus 40 (SV40), at a time when onco-
genic DNA viruses were a popular tool for
inducing experimental malignant transforma-
tion to study neoplasia. For 10 years the p53
gene was thought to be an oncogene before
the finding that it was mutated in a range of
cancers, suggesting p53 had a role as a tumor
suppressor. This was confirmed by evidence
that wild-type, normal p53 could suppress
transformation of cells caused by mutant p53
and oncogenes. In 1992, using mice with non-
functional p53 which had a higher propensity
to develop spontaneous tumors, p53 was
firmly established as a tumor suppressor gene.
It is now estimated that a wide range of cancer
types and some 50% of all human tumors have
specific p53 mutations (www.iarc.fr/p53).

p53, “guardian of the genome”,1 is regarded
as a tumor suppressor gene with tumor devel-
opment frequently attributed either to p53
deletion, p53 mutation or aberrant p53 func-
tion. p53 is involved in distinct functions at
the cellular level, including regulation of nor-
mal cell growth and division, gene transcrip-
tion, DNA repair, and genomic stability. Hence,
p53 is regarded as a crucial regulatory protein
which integrates an array of signals, in
response to which it turns on a host of bio-
chemical responses at the level of the cell and
ultimately the whole organism (Figure 12.1).2

p53 activation, resulting in cell cycle arrest or
apoptosis, prevents the perpetuation of
genetic defects which would otherwise go
unrecognized.1

The p53 gene, located at 17p13.3, was long
thought to produce only one protein, but it
has recently been discovered that, via alterna-
tive splicing and an internal promoter, the
gene can in fact make up to nine different
protein isoforms.3,4 The main protein prod-
uct of the p53 gene is a phosphoprotein com-
prising 393 amino acid residues (Figure 12.2),
with at least four recognized, highly con-
served “boxes” or “domains”: the N-terminal
(amino-terminal) transactivation domain;2 cen-
tral DNA-binding domain; a tetramerization
domain; and the C-terminal negative regula-
tory domain. Although each domain is
involved in distinct and independent func-
tions, overall they are interdependent in the
sense that alterations within one domain can
profoundly influence the functions of the
other domains.5 The biological relevance of
the p53 isoforms is actively being investi-
gated, and the expression of the different iso-
forms could determine cell fate in response
to cellular stress4 and may be related to prog-
nosis in breast cancer.

Two homologues of p53 – p63 and p73 –
share many structural similarities (including
splice variants) and functional overlap with
p53, and may cooperate with p53 in tumor
suppressor effects. Indeed, p73 may replace
the function of p53 in anthracyclin-treated
p53-deficient cells triggering apoptosis,6 and
p63 may control a pathway for p73-dependent
cisplatin sensitivity in triple-negative (estro-
gen receptor (ER), progesterone receptor
(PR) and human epidermal growth factor
receptor 2 (HER2) negative) breast cancers.7

The p53 protein in normal cells is in a
latent form, with a low steady state due to the
rapid rate of proteolytic degradation, but p53
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accumulates in response to multiple stimuli.
This is mediated through posttranslational
modification involving phosphorylation of
mainly the amino-terminus by the DNA–
protein kinases (PK), or the carboxy-terminus
by the cyclin-dependent kinases leading to an
increase in the half-life of the protein.9

Mutations can potentially alter the conforma-
tion of p53 leading to increased stability and
hence accumulation of the protein.5,10 Since
the half-life of wild-type p53 is about 20 min-
utes, p53 may be virtually undetectable in nor-
mal cells. Mutated p53 protein has a longer
half-life and, unlike the wild-type protein,
tends to accumulate in tumor cells, allowing
detection by immunohistochemistry. 

P53 FUNCTION

p53 has been ascribed functions as: a tran-
scription factor; in maintaining genomic

integrity; as a tumor suppressor gene mediat-
ing cell cycle arrest and/or apoptosis; and in a
range of developmental and physiological
roles2,11,12 through its transcriptional and non-
transcriptional functions. Indeed, p53 is cen-
tral to the balance between aging and the
development of cancer.10

p53 as a transcription factor

The cardinal feature of wild-type p53 is as a
sequence-specific transcriptional activator via
DNA-binding and -activation domains, which
bind to specific DNA sequences of some 300
“target genes”, promoting or suppressing
their activities in response to DNA damage.
In human cancers it is in this critical DNA-
binding domain where the majority of the p53
mutations occur, termed “hot spot” mutations
(www.iarc.fr/p53). A number of target-genes
containing p53-binding sites, both in the
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Figure 12.1 p53 integrates
the cellular response to nox-
ious stimuli including DNA
damage, hypoxia, heat shock,
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of the response, p53 tetramers
activate pathways eliciting a
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resulting in cell cycle arrest
(involving the p21 protein) or
apoptosis (involving the Bax
protein). p53 also enhances
Mouse Double Minute
(MDM)-2 and is regulated via
MDM-2, which targets p53 for
destruction via polyubiquiti-
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Walker-8050-12:Walker-8050-12 5/30/2008 7:44 PM Page 149



promoter and intron regions, have been iden-
tified, including p21WAF1, MDM-2 and BAX
(Figure 12.2).

p53 maintaining genomic integrity

p53 appears to have a direct effect on main-
taining genomic integrity through monitoring
DNA damage by activating genes which facili-
tate, but also regulate, DNA repair. p53 actively

participates in various processes of DNA repair
and DNA recombination by interaction with
the repair and recombination machinery,
respectively. This suggests that p53 exerts its
role as the guardian of the genome at two 
levels. In the activated form, p53 will exert
tumor-suppressor activities in response to
exogenous DNA damage and cellular stress. In
the non induced form, p53 remains active
through inherent exonuclease activity engaged
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in prevention and repair of endogenous DNA
damage, thus maintaining genomic integrity. 

p53 as a tumor suppressor

As a tumor suppressor, p53 plays a pivotal role
as a mediator between stressful stimuli and
the final cellular outcome (Figure 12.1). The
two main cellular responses to DNA damage
mediated through p53 are growth arrest,
which prevents propagation and accumulation
of cells with genetic alterations, and apoptosis
(programed cell death) achieving elimination
of the target cell.

Growth arrest

p53 mediates growth arrest through regula-
tion of crucial checkpoints during both the G1
and G2 phases of cell cycle. p53-dependent G1
arrest is mediated by transactivation of the
waf1 gene that codes for the small kinase
inhibitor p21waf1. This protein in turn prevents
entry to the S phase in the cell cycle by block-
ing the activity of the cyclin-dependent
kinases (Cdk). Inhibition of this G1-phase-
specific Cdk activity maintains a hypophos-
phorylated retinoblastoma protein (pRb),
which in turn blocks the E2F-mediated tran-
scription of genes required for entry into S
phase, therefore blocking cell cycle progres-
sion and hence resulting in the accumulation
of cells in the G1 phase.13 p53-mediated G1
arrest can also be induced independent of p21.

p53-dependent G2 arrest is mediated
through at least two target genes: the 14-3-3σ
gene through sequestering phosphatases of
the cyclinB/cdc2 complex; and, to a lesser
extent, the GADD45 gene which interacts
directly with cdc2 and therefore disrupts the
cyclinB/cdc2 complex, which is required for
the G2/M transition.

Apoptosis

While cell cycle arrest can function to inhibit
growth in normal cells, cells that have under-
gone malignant transformation are less sus-
ceptible to growth arrest and favor apoptosis.
The apoptotic pathway is characterized by the

activation of caspases (cell death proteases),
which are themselves activated by catalytic
cleavage. This results in the disruption of the
function of essential regulatory proteins and
as a result cells are committed to enter the
“cell death” pathway.14 Activation of caspases is
followed by characteristic structural changes
within the cell, nuclear condensation and
destruction, membrane blebbing, loss of cellu-
lar volume, and ultimately loss of membrane
integrity. The two roles of p53 in apoptosis
can be described as transcription-dependent
p53-mediated apoptosis or transcription-
independent mediated apoptosis.

For transcription-dependent p53-mediated
apoptosis, there are two groups of regulatory
genes involved in regulation, pro-apoptotic
genes such as Bax, which has p53 binding sites
in its promoter site and is upregulated in
response to DNA damage and antiapoptotic
genes such as Bcl-2 and Bcl-x.15

Introduction of Bax into cells results in
rapid cell death which can be inhibited by
coexpression of either Bax-binding proteins
or death-inhibiting proteins Bcl-2 and Bcl-x.
On the other hand, p53 is also known to tran-
scriptionally repress expression of other genes
such as the death-inhibiting gene Bcl-2.15 The
combination of Bcl-2 repression with induc-
tion of the death-promoting gene Bax would
therefore result in cell death.16

Additional protein–protein interactions also
play a role in directing p53 towards apoptosis
with the apoptosis-stimulating protein of p53
(ASPP) family of proteins being one of the best
examples. This family contains three proteins:
ASPP1 and f-2, which stimulate p53-dependant
apoptosis by promoting p53 binding to pro-
apoptotic genes promoters; and iASPP, which
inhibits p53-mediated apoptosis by antagoniz-
ing pro-apoptotic gene expression.17

p53 can also induce apoptosis via nontran-
scriptional functions, where p53 interacts with
pro-apoptotic and antiapoptotic proteins
belonging to the Bcl-2 family in the cytosol
causing an induction of mitochondrial mem-
brane permeabilization, cytochrome c release
and subsequent caspase activation. An impor-
tant aspect to this work has been the identifica-
tion of differences between two polymorphic
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variants of p53. Within the proline-rich domain
of p53, there is a polymorphism at codon 72
(pro/arg), which correlates with the apoptotic
potential of the p53 proteins and their affinity
for localizing to the mitochondrial outer mem-
brane.18 The importance of this proline-rich
region in mediating apoptosis independent of
p53 sequence-specific transactivation has been
particularly highlighted in Li–Fraumeni19

patients where a germ-line mutation within this
region (proline-82) has been clearly identified
and characterized, and in which female mem-
bers have a high risk of breast cancer.

Choice between growth arrest and apoptosis

In response to DNA damage (Figure 12.1),
whether the cells undergo growth arrest or
apoptosis is usually dependent on the integra-
tion of signals in a cell-specific manner. The cell
type and oncogenic status, the intensity and
strength of the stimuli, the basal p53 levels, and
the degree of p53 interaction with other cellu-
lar proteins which are directly or indirectly
involved in the induction of growth arrest or
apoptosis all contribute to the response. 

In cancer cells, the key factors are the effi-
cacy of the DNA repair mechanisms and the
level of p53 expression in response to DNA
damage. Whilst p53 at high levels promotes
apoptosis, p53 expressed at low levels protects
cells against apoptosis. p53 remains active as
long as DNA damage persists, but if the DNA
is repaired rapidly the period of p53 expres-
sion/activation is short and hence little p53
accumulates. When DNA damage is extensive
the period of p53 expression is prolonged. 

In addition, the balance of the regulatory
mechanisms against apoptosis also play an
important role: Bax (pro-apoptotic) versus Bcl-
2 (antiapoptotic), the Rb–E2F pathway that
mediates p53-dependent G1 cell cycle arrest,
and growth/survival factor cytokines which
protect cells from apoptosis in favor of growth
arrest are all important factors when deciding
cellular outcome in response to stress.20

Posttranslational modification of p53 involv -
ing phosphorylation at serine 315 by the
Cdks is said to alter the specific DNA-binding

affinities of p53.21 Similar effects are seen in
the interaction of p53 with other proteins
such as p300, which is essential for both p21
and Mouse Double Minute (MDM)-2 induc-
tion and thyroid hormone receptor β1, which
upon binding to p53 inhibits Bax and growth
arrest and DNA damage inducible gene
(GADD45).

Finally, the intensity of the DNA-damaging
signal, along with the time period to which
cells are exposed to the stressful stimuli, has a
major role in determining the cellular out-
come. Thus, apoptosis is induced in response
to a higher intensity and longer period of
damage-inducing signals, whereas the reverse
is true for induction of growth arrest. 

Regulation of p53 activity

Acting as the central coordinator between the
stressful stimuli and the final outcome of the
cell (Figure 12.1), p53 can be subject to exten-
sive and complex regulation. Molecular mech-
anisms responsible for conversion of the
latent p53 in normal cells to the active form
are complex but comprise a series of post-
translational modifications of p53, interaction
of p53 protein with other proteins, and a
series of noncovalent regulators all of which
provide therapeutic opportunities.5

p53 regulation through the N-terminal
transactivation domain

Posttranslational modifications result in confor-
mational changes within the p53 molecule and
hence activation of p53. These modifications
include p53 regulation through phosphory -
lation sites in the N-terminal trans activation
domain (residues 1–44) (Figure 12.2). While
the phosphorylation sites have not yet been
fully characterized, serine (Ser) 4, Ser6 and
Ser9 for the casein kinase (CK) I site, and
Ser15 and Ser37 for the DNA-protein kinase
(PK) site appear to be important.9

The interaction of the N-terminal domain of
p53 with other proteins within the transcrip-
tional machinery is pivotal to its role as a tran-
scriptional activator. p53-interacting proteins
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belonging to the transcription machinery
include MDM-2, the DNA sequence of Ts and
As where transcription factors bind (TATA)
box-binding protein (TBP), TBP-associated
factor (TAF), the p62 component of trans crip -
tion factor IIH (TFIIH) and p300/CPB (CREB
Bind   ing Protein).15 Amongst the key p53
N-terminal-interacting proteins, in which altered
expression is demonstrated in many cancers –
including breast cancer – is the MDM-2 pro-
tein.22 MDM-2 controls the biological activity
of p53 and targets p53 for destruction, acting
as an E3 ligase to conjugate ubiquitin to p53,
which provides a signal for p53 to be degraded
by the proteasome. MDM-2 is a target gene of
p53 and is therefore upregulated when p53 is
activated, thus providing an inbuilt negative-
feedback loop mechanism whereby p53
expression is controlled at the cellular level.
The p53–MDM-2 protein interaction is of
physiological relevance, as evidenced by over-
expression of MDM-2 protein inactivating
wild-type p53 in soft tissue sarcomas.23 In addi-
tion, early embryonic lethal phenotype of an
MDM-2 knockout mouse is rescued when
crossed into a p53 null phenotype.24

Changes within the N-terminal domain,
through interactions with other proteins, can
quantitatively increase DNA binding, whereas
the opposite is true for changes brought about
through phosphorylation of the N-terminal
sites in p53.8 Posttranslational modification of
the p53 N-terminus at Ser15 by DNA–PK has
been shown to reduce the ability of p53 and
MDM-2 to bind, and since MDM-2 is a strong
promoter of p53 degradation this results in p53
stabilization and hence accumulation.8 The
role of MDM-2 in p53 protein stabilization is
further supported by the fact that the tumor
suppressor p19ARF (alternating reading frame
spliced product of the murine p16INK4A
locus) induces p53 stabilization through its
interaction with MDM-2. 

p53 regulation through the central core
domain

Amongst the five conserved regions of p53,
regions II–V map within the central core

DNA-binding domain (residues 102–292;
Figure 12.2) where the majority of mutations
observed in human cancers have been identi-
fied (www.iarc.fr/p53).

Specific DNA binding of the central core
domain is essential for the role of p53 as a
tumor suppressor. Mutations in the cysteine
residues block p53 transactivation and tumor-
suppression function. Many of these residues
are specifically mutated in numerous naturally
occurring human cancers (www.iarc.fr/p53).

p53 regulation through the tetramerization
domain

Maintaining the active p53 molecule in the
form of a tetramer enhances p53’s DNA
sequence-specific binding properties. The
altered folding and conformational structure
of p53 in tumors is highlighted by using anti-
bodies specific for denatured p53 in tumor
cells. Maintaining p53 in a tetrameric struc-
ture is ensured by the p53 tetramerization
domain: alterations in this domain can reduce,
or indeed prevent, DNA binding of the p53
protein. As an example, in the Li–Fraumeni
syndrome altered thermal stability of the
tetramerization domain results in ineffective
MDM-2 binding to p53. 

The group of cellular proteins known as
“heat shock proteins” (HSPs) also play a pivotal
role in maintaining the conformational structure
of p53. HSPs (mainly HSP70, HSP40, and
HSP90) contribute to p53 inactivation and
oppose apoptosis in some cell lines undergoing
drug or radiation-induced apoptosis.25 This effect
contributes to tumor cell survival, consistent with
the observed increase in the HSP–mutant p53
complex in some cancers. Conversely, HSPs are
involved in protecting proteins from unfolding
and aim to refold denatured proteins, in addi-
tion to targeting the irreversibly “damaged”
ones for destruction. 

p53 regulation through the C-terminal
domain

The C-terminal regulatory domain (Figure 12.2)
effects the DNA-binding ability of the central
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core domain either through interactions with
other proteins or as the result of direct modifi-
cation.5 This domain acts both as a negative
regulatory region, controlling the DNA
sequence-specific binding of the central core
domain, and as a separate functional domain. 

Alongside regulation of the central core
domain, the p53 C-terminus can also be
regarded as a damage-recognition region. The
p53 C-terminus is able to bind DNA ends and
strands, DNA mismatches, Holliday junctions,
and irradiated DNA. In addition, a number of
proteins involved in the DNA repair mecha-
nisms can also interact with and regulate p53,
presumably through the C-terminus. 

The significance of these interactions and
their probable effect on the p53 sequence
binding transactivation function have yet to
be fully explored. However, it is clear that the
relationship between p53 and the DNA-repair
processes is not only through stimulation and
signaling after DNA damage but also through
its multiple direct interactions with the pro-
teins involved in the DNA-repair mechanisms.

Posttranslational modification of
p53 involving phosphorylation

Posttranslational modifications involving
phosphorylation affect p53 turnover and
accumulation,8 particularly within the N- and
C-terminal domains of the protein. 

p53 protein can be phosphorylated by PKs at
various sites along the length of the molecule.
These include kinases such as CK I (at the trans-
activation domain), DNA–PK, c-Jun N-terminal
kinase (JNK), mitogen-activated protein (MAP)
kinase, and CK II.9 Radiation can alter phos-
phorylation status of at least two key regulatory
sites in the p53 molecule, which in turn alters
its activity as a transcription factor, and phos-
phorylation of the carboxyl terminal can alter
the sequence-specific DNA binding.26 Thus,
p53 modification by phosphorylation may alter
the functional balance of this key cellular regu-
lation pathway and the relative efficacy of acti-
vation of different p53 target genes.9

p53 can also undergo posttranslational modifi-
cation via acetylation, sumolyation, neddylation,

and methylation. Such modifications mediate
the transactivation potential of p53 either by
enhancing or repressing direct DNA binding by
p53, or influencing the affinity of p53 for regula-
tory partners. More recently the in vivo impor-
tance of acetylation, sumolyation and neddylation
has been called into question via the use of mice
models, and thus further investigation will be
required to determine how important modifica-
tions other than phosphorylation are in vivo.27

P53 INDUCING OR SUPPRESSING
THE FUNCTION OF OTHER GENES

Amongst some of the key p53 transactivated
target genes containing p53-binding sites, in
which altered expression is demonstrated in
many cancers, are MDM-222 and p21.28

The MDM-2 gene encodes the mdm-2 pro-
tein that controls the biological activity of p53
and targets p53 for destruction,22 and there-
fore provides an inbuilt mechanism whereby
p53 expression is controlled at the cellular
level. p21 mediates the tumor-suppressing
effects of p53 by inhibiting Cdk complex activ-
ity, therefore blocking the transition from G1
to S phase in cell cycle progression, mediating
p53-dependent growth arrest.29

Mouse Double Minute-2

There are at least seven different transcripts
of the human MDM-2 gene, coding for the
MDM-2 protein. The largest human MDM-2
protein consists of 491 amino acids and has
several conserved features. These include the
amino-terminus domain which interacts with
p53, inhibiting transcriptional activity, the
nuclear localization sequence (NLS) and the
nuclear export signal (NES) sequence which
mediate MDM-2 shuttling between the
nucleus and the cytoplasm, the highly acidic
domain which constitutes a second p53 inter-
action site, the zinc-finger domain and a fur-
ther two zinc fingers in a ring conformation
(RING-finger domain) which mediate sequence-
specific RNA binding and is also involved
auto-ubiquitination and ubiquitination of p53,
necessary for degradation by the proteasome. 
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A single nucleotide polymorphism (SNP) of
MDM-2 at position 309 has been suggested as
a predisposing factor in breast cancer,30 but a
large meta-analysis of the 5000 cases exam-
ined in the literature has failed to confirm any
linkage to early onset of breast cancer.31

MDM-2–p53 interaction

p53 and MDM-2 form an autoregulatory feed-
back loop in that p53 upregulates MDM-2 lev-
els whilst MDM-2 negatively regulates p53
levels and hence p53 activity. In response to
DNA damage, there is a fall in both the MDM-2
mRNA and protein levels, with a subsequent
rise in p53 levels. This is followed by an
increase in the transcriptional activity of p53
and initiation of the relevant cellular response
to DNA damage. The high levels of transcrip-
tionally active p53 increase MDM-2 gene tran-
scription which results in inhibition of p53’s
transcriptional activity and promotion of p53
degradation.32

MDM-2 as an oncogene

MDM-2 was first regarded as an oncogene
when it was realized that cell lines overex-
pressing MDM-2 show tumorigenic properties
in nude mice. In addition, targeted MDM-2
overexpression in the mammary tissue of mice
during lactation has been shown to not only
induce cellular changes similar to the pheno-
types with inactive or defective p53 but also to
progress to the development of mammary
gland tumors by the time the mice reach 18
months of age.33

The oncogenic properties of MDM-2 were
further suggested in a range of tumor types
including breast cancers,22 where overexpres-
sion of MDM-2 was found either through gene
amplification, increased transcription, or
increased translation. In some individuals
with Li–Fraumeni syndrome, who have two
alleles of p53 without the capacity to express
p21, show overexpression of MDM-2 in their
normal tissues. Overexpression of MDM-2 in
the absence of p21 expression (which is tran-
scriptionally induced by p53) suggests that

MDM-2 overexpression is p53 independent
and may be a direct cause of the high tumor
incidence (including breast cancer) in these
families.34

Mouse Double Minute-4

MDM-4 (MDMX) was identified as a binding
partner of p53 and shows structural homology
to MDM-2, and is thus a potentially important
regulator of p53. When bound to p53 it inhibits
p53 transactivation, but does not appear to
target p53 for degradation as it lacks the E3
ubiquitin ligase function of MDM-2. MDMX
overexpression can protect p53 from MDM-2-
mediated degradation while still maintaining
suppression of p53 transactivation.35 The gene
for MDMX is overexpressed or amplified in
10–20% of diverse tumor types including
breast cancer.27 Like MDM-2, MDMX knockout
mice are embryonic lethal, although this can
be rescued by being in a p53-deficient back-
ground. It has been suggested that to fully acti-
vate p53 both MDM-2 and MDMX need to be
inactivated, which adds another level of com-
plexity when trying to discover ways of exploit-
ing p53 for therapeutic gain.

p21

In mammalian cells, the cell cycle is positively
regulated by a series of stable and unstable pro-
teins termed Cdks and cyclins, respectively. This
regulation is mediated through the phosphory-
lation of specific substrates which are inhibited
by the so-called cyclin kinase inhibitors (CKIs),
which therefore negatively regulate cell cycle
progression.36 p21CIP1/WAF1 was the first CKI
identified in mammalian cells.

To ensure genomic integrity and prevent
the propagation of damaged DNA onto future
generations of cells, eukaryotic cells have
developed a series of “checkpoint-response
pathways”. These are controlled through the
damage-suppressor genes, either acting
directly or indirectly, mediating specific target
genes. p21 is regarded as one of the major tar-
get genes in p53-mediated cell cycle growth
arrest in both normal and the tumor cells.
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Inhibition of cell cycle progression, mediated
through p21 activity, occurs at two main regu-
latory checkpoint-response pathways: G1
arrest and G2 arrest. 

p53-dependent G1 arrest

In response to DNA damage, p53-induced
G1 arrest is mediated through transactivation
of the WAF1 gene that codes for the small
kinase inhibitor p21WAF1. By blocking the activ-
ity of the Cdks (namely, Cdk2, Cdk4, and
cdc2 cyclin complexes), p21 blocks the entry
into the S phase at G1.13 Arrest of the cell
cycle at G1 through inhibition of the G1-
specific kinases results in the maintenance of
the hypo phos phorylated form of the protein
product of the retinoblastoma susceptibility
gene pRb. The hypophosphorylated pRb
blocks the E2F-mediated transactivation of the
genes which is required for the entry into S
phase, which results in the accumulation of
the cells at G1.

Accumulation of the cells in S phase is also
mediated through proliferating-cell nuclear
antigen (PCNA). In the process of DNA repli-
cation, PCNA forms a complex with replica-
tion factor C (RF-C), which together promote
recognition of a primer-template junction
which facilitates the uptake of DNA polymerase
δ. The “trimeric” protein complex PCNA–
RF-C–polymerase δ induces DNA replication.
Direct binding of p21 to PCNA dissociates the
PCNA–RF-C–polymerase δ complex, which
arrests the replicating DNA.37

p53-independent G2 arrest

Cell cycle arrest mediated by p21 can also
occur at the later stages of the cell cycle,
namely the G2 phase. p21WAF1 mRNA upregu-
lation as well as peaking in G1 is also seen to
be transiently elevated at the G2/M phase.
This is said to be through p21 association with
cyclin A and B complexes.38 In late G2, nearly
half of the Cdk2/cyclin A is in a complex with
p21. The inhibition of Cdk2/cyclin A can
either be as the result of the direct inhibition
of the activated kinase by p21, indirectly

through inactivation of the Cdk-activating
kinase (CAK) by p21 or, indeed, through
blocking the interaction of other cyclin sub-
strates with the Cdk2/cyclin A complex. 

LESSONS FROM IN VIVO STUDIES
OF P53 

As a step towards understanding the role of p53
in breast cancer, the development of mouse
models has been crucial in defining the func-
tion of p53 as a tumor-suppressor gene and in
examining the effect on downstream genes.

Through gene targeting technology, p53 has
been inactivated in mouse models by disrupt-
ing the DNA-binding domain39 or through
inducing point mutations at regions mainly
involving the crucial coding sequences in the
p53 gene.40 When these mice were bred to
homozygosity, a high proportion showed a ten-
dency towards rapid development of tumors
by 6 months and almost all died or developed
tumors by 10 months. Heterozygous mice
(p53+/−), which model the genetics of the Li–
Fraumeni syndrome, also show similar tenden-
cies but with a slightly longer latency time to
tumor development.39 The concept of tumor
development by loss of one normal allele, loss
of heterozygosity (LOH), followed by muta-
tion of the second allele highlights the impor-
tance of normal p53 function in protection
against carcinogenesis. 

The role of p21 as one of the major compo-
nents in p53-mediated cell cycle arrest came to
light when mice with homozygous deletion for
p21WAF1 were shown to be able to go through
normal development but failed to demonstrate
cell cycle arrest at the G1 checkpoint.41

Similarly, the function of MDM-2 as both a p53
transcriptionally activated gene and p53 degra-
dation regulator gene came to light and was
confirmed through studies on the mouse mod-
els. This was demonstrated through an example
of “phenotype rescue” when MDM-2-deficient
mice were crossed to p53-deficient mice. It was
observed that though MDM-2 null mice
resulted in early embryonic lethality, when
MDM-2 heterozygous mice were crossed with
p53-deficient mice the double null p53 and
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MDM-2 mice were completely viable with no
developmental abnormalities. The so-called
“rescue of the embryonic lethality” high-
lighted the primary function of MDM-2 in
development is to inactivate the p53 activity
that coincides with a high level of cell cycle
progression activity. This therefore suggests
that the lethality of the MDM-2 null mice was
due to unregulated activity of p53 which would
otherwise have been controlled by MDM-2.24

More recently, mouse models of tumor for-
mation have become more advanced and have
been used to test whether reactivation of p53
in developed tumors can lead to tumor sup-
pression. In elegant experiments it was shown
that if p53 could be reintroduced into estab-
lished tumors then the tumors were subject to
massive apoptosis of cell growth arrest, depend-
ing on tumor type.42,43 This has lead to the
increased enthusiasm for the development of
novel p53-activating drugs for cancer therapy.

METHODS TO DETECT P53

The detection of p53 in breast cancer can be at
the genomic level (DNA), as transcribed mes-
senger RNA, or as the p53 protein (Figure
12.3). Studies of p53 DNA can be classed as
looking for mutations or polymorphisms by
DNA sequencing, yeast functional assay or Chip-
based technology; allele loss (LOH)/allelic
imbalance, resulting in wild-type p53 gene
haplo-insufficiency, which can be sufficient to
predispose to malignancy. The yeast functional

assay uses a reporter system in S cerevisiae and
can detect <10% of breast cancer cells bearing
mutant p53 in a tissue sample, supplemented
by direct sequencing to locate the precise
mutation.44 This combination can point to the
functional significance of individual gene
mutations but avoids the problem of directly
sequencing breast cancer tissue DNA and
hence missing mutations where the cancer tis-
sue is outnumbered by normal cells. The clin-
ical utility of the yeast functional assay in
predicting response to taxane- or anthracyclin-
based therapy is currently under study in a ran-
domized trial of neoadjuvant chemotherapy
(EORTC trial 10094). Direct DNA sequencing,
supplemented by laser-capture microscopy to
isolate the relevant tumor tissue, is a useful
research tool, but both techniques may be
supplanted by the Affymetrix platform-based
p53 mutation Chip (Roche Diagnostics,
Pleasanton, CA, USA), which can detect muta-
tions and polymorphisms across the p53 gene
from a single DNA sample.

While detection of p53 mRNA by Northern
blotting, polymerase chain reaction (PCR)
techniques or in situ techniques can indicate
levels of p53 expression in breast tissue, there
appears to be little correlation between
mRNA expression and p53 protein activity
in breast cancer.45 This may be further
compounded by differential expression of
p53 isoforms at the mRNA and protein level.3

The majority of studies of p53 in breast can-
cer have been based on antibodies to various
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Figure 12.3 Methods used to detect p53 aberrations include: (a) the yeast functional assay where mutation in p53
appears as red colonies on the agar plate, (b)yeast colonies with wild-type p53 as white colonies and a tumor sample
demonstrates a mix of red colonies from cancer cells with mutant p53 and (c)white colonies from the normal tissue in
the biopsy specimen (after Duddy et al 2000).
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domains or individual amino acid residues in
p53, both in Western blots and by immuno-
histochemistry utilizing either paraffin-fixed
tissue or frozen samples depending on the
antibody in question. Incorrect assumptions
that simple detection of p53 in tumor tissues
reflects the presence of mutant p53, disre-
garding tissue processing and the effect that
has on p53 protein, p53 localization within
the tissues or the specificity of the antibody
has led to a confused picture as to the value of
p53 protein studies in response to therapy or
as a prognostic marker.

P53 AND BREAST CANCER

p53 mutation is uncommon in breast cancer
families accounting for approximately only
1% of breast cancer predisposition.46 p53
protein overexpression or mutation is rare
in normal breast or in benign breast condi-
tions, although p53 protein accumulation
has been linked to an increased risk of breast
cancer in women with benign breast disease.47

Abnormalities in p53 function appear to be
more common than specific p53 gene muta-
tions in breast cancer, unlike many other can-
cer types. Loss of p53 normal function as the
result of LOH (loss of one allele) is more com-
mon than the homozygous deletion (loss of
both alleles), and is seen in up to 61% of the
primary breast cancers45 and may precede the
invasive phenotype (particularly in high-grade or
comedo-type ductal carcinoma in situ (DCIS).48

The observation of p53 mutation or overex-
pression of p53 protein in up to 52% of pri-
mary breast cancer specimens, along with
increasing knowledge of the characteristics of
p53, has focused the attention in recent years
into two areas:

• using p53 as a potential marker for study-
ing the relationship between mutant p53
expression and tumor development, pro-
gression, response to treatment, and dis-
ease outcome;

• designing alternative treatment strategies
specifically aiming at restoring p53 function
to normal. 

p53 as a diagnostic marker

Specific p53 mutations are only observed in
15–35% of breast cancers. Mutant p53 as a diag-
nostic marker for familial breast cancers has
been most promising in the Li–Fraumeni
syndrome,19 an autosomal dominant familial
disorder characterized by the development of
bone/soft tissue sarcomas, leukemia, adreno-
cortical, brain and breast cancers. The expected
disease penetrance is 50% by the age of 30 and
90% by the age of 60. Typically, p53 mutation in
one allele is accompanied by loss of the other
allele (LOH) in the tumors arising in family
members. Thus, somatic cells lack normal p53
function, in the Li–Fraumeni patients who have
inherited one defective copy of p53.49

p53 germ-line mutations have been observed
in a large proportion of these families, with
some reports finding them in up to 70%.50

While Li–Fraumeni families are uncommon,
the detection of p53 mutation represents a
clinically useful diagnostic tool since p53
mutations matching the “codons” or the “hot
spots” which are seen in these tumors can be
sought by examining the DNA obtained from
a peripheral blood sample in family members.

For sporadic breast cancer, there is conflicting
data on the clinical relevance of polymorphisms
in codon 72 of p53.30 For example, an increased
risk of developing breast cancer; in particular,
the arg/arg phenotype51 contrasts with an asso-
ciation between the pro/pro phenotype with
poorer disease-free survival in patients who went
on to receive adjuvant chemotherapy;52 the
value of the codon 72 p53 polymorphism has, at
present, uncertain clinical utility.

p53 as a predictor for treatment strategy
or disease response

Endocrine therapy, systemic chemotherapy
and breast radiotherapy have been shown to
significantly reduce disease relapse and pro-
long survival in patients with breast cancer.
However, it has not been possible to confi-
dently identify the patients in whom treat-
ment is of benefit or those for whom such
treatments ought to be avoided. 
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The function of a number of anticancer
agents is directed towards inducing cell death
or apoptosis. Loss of normal p53 function can
potentially result in relative resistance of breast
cancers to chemotherapeutic agents, due to
loss of the apoptotic properties of p53. This
has been of particular significance in the use
of preoperative, neoadjuvant chemotherapy
whereby poorer outcome has been observed
in those tumors with higher p53 accumulation
rates, as demonstrated by immunohistochem-
istry,53 while patients with tumors containing
wild-type p53 show a more dramatic positive
response rate to the preoperative chemother-
apy.54 The importance of p53 in response
to chemotherapy may depend both on the
chemo therapy agent(s) themselves and on
the tumor subtype, since mutant p53 contain-
ing inflammatory breast cancer55 or the basal
histological subtype56 may be more responsive
to chemotherapy.

Several studies have suggested that p53 status
is an important determinant of tumor respon-
siveness to antineoplastic agents in breast cancer,
including Cyclophosphamide, Methotrexate and
5-fluorouracil (CMF) chemotherapy57 and anthra-
cycline-based chemotherapy where specific
mutations in p53 have been associated with poor
response to primary systemic therapy,58,59

response to neoadjuvant therapy,60 and overall
survival.61 However, a differential effect of anthra-
cyclines and taxanes on breast cancers based on
the p53 status of the tumor underpins the
EORTC 10094 trial testing the hypothesis that
taxanes may have a greater efficacy against p53
mutant breast cancer than anthracyclines.59,62

Although there have been suggestions that
p53 immunohistochemistry may be a poor
prognostic factor for some forms of chemo -
therapy but of less apparent value for others,
in general, most studies suggest p53 immuno-
histochemistry does not predict drug sensitivity
in breast cancer.

For systemic endocrine therapy, the pro72
polymorphism appears to be associated with
improved disease-free survival in patients with
an ER-positive cancer given adjuvant tamoxi -
fen.63 Node-positive patients with primary
breast cancer positive for p53 mutation have a

poorer response rate to adjuvant tamoxifen
treatment,64 further supported by the reduced
response to tamoxifen associated with p53
protein accumulation in cytosolic extracts.65

p53 protein accumulation in breast cancer is
also associated with time to endocrine fail-
ure,66 poor response to endocrine therapy in
the metastatic setting,67 and reduced post re-
lapse survival.67

The relationship between radiotherapy
and p53 in breast cancer also appears to be
complex. There are series which have shown
that tumors with wild-type p53 have a better
response to radiotherapy, than for chemother-
 apy,54 but others suggest that tumors harbor-
ing p53 mutations should be more
susceptible to postoperative radiotherapy
than those with normal p53.68 One explana-
tion of this could be that having been
exposed to radiation damage, cells with
mutant p53 cannot activate p53-dependent
repair mechanisms.69 However, more recent
microarray expression studies suggest that
p53 mutation does influence gene expression
patterns following radiotherapy.70

The value of p53 as an independent marker
for treatment response and prognosis has also
been related to the clinical stage at the time of
presentation. p53 nuclear accumulation in
early breast cancer (stage I), may be of signifi-
cant prognostic value,71,72 whereas in locally
advanced breast cancer (stage IIIA/IIIB), p53
may not have the same independent prognostic
significance.73

p53 mutation alone may not be sufficient to
predict response to systemic therapy in clinical
settings, since both in vitro and in vivo studies74

have suggested that p53 function may be dis-
sociated from drug resistance and other cellu-
lar factors are likely to play an important role.
Whether p53 is a significant independent pre-
dictor for response to treatment remains
unclear and is the subject of clinical trials; cur-
rently, there are insufficient data to support
the routine assessment of p53 status as a
marker of response to treatment in breast can-
cer. p53 has been shown to affect apoptosis
by regulating the expression of Bcl-2 and
Bax, which inhibit and promote apoptosis,
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respectively.16,75 The reduced Bcl-2 and increased
Bax expression, and hence increased cell
death observed in a p53-dependent manner
following treatment with systemic chemother-
apy, suggest that analysis of the Bcl-2:Bax ratio
as well as p53 status offers more practical infor-
mation on tumor response following systemic
chemotherapy. 

p53 as a prognostic factor

Alteration of the p53 gene in breast cancer is
associated with an unfavorable prognosis.76–79

Accumulation of nuclear p53, or expression
of mutant p53, is associated with a number of
histological, biological and clinical adverse
prognostic factors including developing
meta stasis and reduced disease-free survival.80

Microarray approaches have identified a
32-gene expression signature which distin-
guishes mutant from wild-type p53 and out-
performs sequence-based assessment of p53
in predicting prognosis,62 underlining that
not all mutations are equal.81 p53 network
changes may occur without mutation and the
role of p53 in different therapeutic settings
may vary. However, p53 overexpression may
be a predictor of local recurrence in operable
breast cancer.82

p53 aberrations vary between different his-
tological types of breast cancers. They are
more common in the invasive ductal carcino-
mas as opposed to lobular carcinomas, and less
common in the well-differentiated types with
more favorable prognosis.77 Recent micro array
techniques have identified the basal pheno-
type of breast cancer where p53 mutation
features.80 There are exceptions: poorly dif-
ferentiated medullary carcinomas displaying
p53 gene mutations ironically have a more
favorable prognosis.77 However, p53 abnor-
malities are generally associated with the
higher grade cancers, aneuploid tumors and
those with a high S-phase fraction (mitotic
rate).72 Therefore, the histology of a specific
breast tumor should be considered as an
adjunct to p53 status when using p53 as a
prognostic marker. 

p53 expression is considered to be a marker
of more aggressive cancer76,77 both for locally

advanced and inflammatory cancers. There
are reports of a higher tumor proliferation
rate, early disease recurrence and early death
in node-negative breast cancers,72 and correla-
tion with tumor size, axillary nodal involve-
ment and low hormone-receptor content for
patients with breast cancer containing p53
mutation.77 p53 aberrations are associated
with low levels of ER and PR, which are known
to be markers of less aggressive tumors with
better response rate to systemic hormonal
therapies.45,72,77

The prognostic power of p53 may be best
combined with other cellular and biological
parameters. These include a p53-positive Bcl-
2-negative phenotype independently asso ci -
ated with poor prognosis,83 c-erb-2 (HER2/
neu), Ki67 antigen, and tumor cell charac-
teristics such as microvessel density and tumor
cell proliferation rate.71 Concurrent p53 and
c-erb-2 protein overexpression are associated
with poor overall survival and metastasis-free
interval74 in node-negative tumors, particularly
those with missense mutations.84,85

With the appreciation of p53 as an inde-
pendent biological marker for response to
treatment and disease outcome, at least when
p53 mutations have been detected,77 detect-
ing p53 antibodies or p53 mutations in
patient serum has been proposed as a diag-
nostic tool since such techniques may identify
breast cancer patients.86

STRATEGIES FOR MANIPULATION
OF THE P53 PATHWAY IN THE
TREATMENT OF BREAST CANCER

The insights provided by p53 laboratory
research over three decades are now moving
to clinical applications for enhanced diagnos-
tic, prognostic, and therapeutic intervention.
The detailed strategies for engaging and
manipulating the p53 pathway have been
comprehensively reviewed in the literature
for a wide range of human cancers.5,10,86 For
breast cancer, where not only p53 mutation
but also aberrations of the p53 pathway occur
commonly, many of these strategies hold
promise.
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Strategies which target tumors with
mutant p53

Gene therapy

The addition of the wild-type p53 gene back
into tumors which have mutated p53 or which
are null for p53 is possible by the use of gene
therapy. Using virus-based vectors which are
replication defective it has been possible to
demonstrate a significant clinical effect of sta-
bilizing tumor growth or causing tumor regres -
sion in a fraction of patients with no significant
toxicity.87 This form of gene therapy has been
tested in clinical trials in a range of cancers
based on the concept that the combined use of
these vectors with chemotherapy or radiother-
apy may have an enhanced clinical effect.86

One recent phase II trial of intratumoral
adenoviral vector containing wild-type p53
(AdCMV-p53) combined with chemotherapy88

has shown enhanced p53 activity, local
immunomodulatory effects and objective clin-
i cal response in locally advanced breast cancer.

Selective replication of oncolytic virus

A different approach uses a defective adeno -
virus, Onyx-O15, which can selectively divide in
p53-null cells.89 Onyx-O15 harbors a deletion
in its E1B gene, the protein product of which
binds to p53 and selectively replicates in and
subsequently lyses cells that are p53 null, whilst
leaving normal cells with wild-type p53 unaf-
fected. This virus has been shown to work in
vivo via xenograft models but the mechanism
of action in relation to p53 has remained con-
troversial. Though the potential of this selec-
tive replication and destruction approach is
promising, the ability of the virus to reach
metastatic sites remains problematic since the
replicating virus may evoke an immune res -
ponse and be destroyed by the immune system.
This, combined with the variability in clini cal
trial data, means that much work remains to be
done to elucidate the precise mechanism of
action in different tissue contexts.86

Small molecule reactivators of mutant p53

One of the most attractive opportunities for
exploiting p53 for therapeutic gain comes

from the observation that tumor cells con-
taining mutant p53 have a large amount of
inactive p53 contained within them, which con-
stitutes a “loaded gun” of tumor-suppressor
function.90 Coupled to the fact that only
tumor cells have mutant p53, drugs which
could reactivate mutant p53, should kill or
arrest the growth of tumor cells but not affect
normal cells. This has been demonstrated
using monoclonal antibodies which specifi-
cally recognize a C-terminus epitope of p53 or
short peptides derived from the C-terminus of
p53. Following this rationale, screens have
been carried out to identify small drug-like
molecules which can reactivate mutant p53
causing it to function as wild-type p53 or to
preferentially kill mutant p53 cell lines over
wild-type p53 cell lines.90

Several structurally unrelated compounds
have been discovered including ellipticine,
CP-31398, WR1065, PRIMA-1 (and PRIMA-
1MET), and MIRA.87,90 Perhaps the most devel-
oped of these molecules is the PRIMA-1MET
(for p53 reactivation and induction of massive
apoptosis, methylated analogue), although the
direct mechanism of action of this compound
has not been elucidated. It is possible that
PRIMA-1MET induces the expression of chap-
erone protein such as the HSPs, which could
then bind to p53 and facilitate correct folding
of p53. In fact, PRIMA-1 has been shown to
induce the expression of HSP90 and enhance
its binding to p53 supporting this mechanism.
However, elucidating the mechanism of action
of molecules which may help in the refolding
of proteins is possibly more challenging than
discovering the target, for example, of a kinase-
domain inhibitor.86

Rescue of p53 function

In vivo studies have shown that posttransla-
tional modification of the p53 C-terminus can
act as a rate-limiting step for p53 activation, and
thus interfere with the specific DNA-binding
activity and hence the tumor-suppressor prop-
erties.91 Ablation of the negative regulatory
domain at the p53 C-terminus has been
achieved by using synthetic short peptides
derived from the p53 C-terminus, or antibodies
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to the C-terminus which induce a p53-dependent
response in some cell lines with mutant p53.92

Alternatively, compounds which maintain and
stabilize the DNA-binding domain in the active
conformation have been shown to not only
promote the stability of the wild-type p53 but
also to allow the mutant p53 to retain an active
conformation.93

Reactivation of wild-type p53

In the majority of breast cancers where the
p53 gene is not mutated, the p53 protein is
often kept at very low levels by excessive nega-
tive regulation, even under cellular stress.
Since MDM-2 binds to and inhibits p53 directly,
it has been possible to screen for small mole-
cules which disrupt this binding, leading to
reactivated p53. Molecules capable of doing
just this have been identified and include the
Nutlins,94 potent p53-reactivating molecules,
which have been shown to work in vivo by
reducing tumor growth in mice xenograft

models, but confirmatory clinical data is
awaited. Other molecules which reactivate
wild-type p53 include RITA, shown to work
in vivo via xenograft mice models, which
may bind to the N-terminus of p53 causing
a conformational change in the protein
and preventing MDM-2 binding.95 Screening
chemical libraries for p53-reactivating com-
pounds has identified other compounds, such
as Sangivamycin, but their mechanism of
action in relation to p53 reactivation has not
been elucidated and their in vivo activity
remains to be determined.96

p53 can also be reactivated by preventing the
E3 ubiquitin ligase function of MDM-2, thus
preventing p53 targeting for degradation. This
strategy has identified a family of compounds
called HLI98. The effect of these compounds
on p53 transcriptional activity is weak, as they
also lead to the stabilization of MDM-2.97

Other aspects of p53 regulation can also be tar-
geted for therapeutic gain, such as preventing the
nuclear–cytoplasmic shuttling of p53 by MDM-2
leading to an increase in active p53 in the
nucleus. This has been shown by the use of the
CRM-1 nuclear exportin inhibitor Leptomycin B,
with potent in vivo antitumor activity and in early
phase trials for the treatment of malignancies
where local administration is possible.10

Although the theory of reactivating p53,
mutant or wild type, for cancer treatment holds
great promise there is a noticeable lack of clini-
cal data, even in breast cancer, to support this as
a viable therapeutic avenue at present. A further
approach is to explore the differential responses
of normal and tumor tissues. Conventional
chemotherapy and radiotherapy may be limited
by p53-dependent toxicity in normal tissues.
Using a small molecule (pifithrin-α), which
allows normal cell growth but inhibits p53-
induced transcription following activation by
doxorubicin, may protect against the side-effects
of current therapies by acting as a p53 regula-
tor.98 The use of a drug such as this would
require close scrutiny as it could also enhance
side-effects of the chemotherapeutic agent. 

Activation of p53 by Nutlins may also have
a protective effect on cells with wild-type
p53 when treated with mitotic-inhibiting
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Figure 12.4 Sequencing the p53 gene DNA: in this
instance there is mutation of guanosine to adenine at
base 818 in the p53 gene (amino acid 273, a common
mutation).
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chemotherapeutics but does not protect cells
with mutant p53. This has lead to speculation
that pretreatment with p53 activators could
protect normal cells from mitotic inhibitors
leaving mutant p53 tumors increasingly sus-
ceptible to the chemo therapeutic agent, but
conversely could protect wild-type p53 tumors
from the therapy.99 Thus, if used clinically, the
p53 mutational status of the tumor would
require confirmation prior to treatment.

Upstream targets

Since mutation in upstream signaling kinases
have been seen to ablate the p53 response,
the role of ATM and CHK2 kinases in signal-
ing DNA damage to p53 also presents an
attractive target. Activation of these kinases
blocks p53 degradation by phosphorylating
both p53 and MDM-2.

Simulating lost function of the
p53-dependent target genes

p53 conveys its activity as a tumor-suppressor
gene via downstream target genes, activities of
which are lost if p53 is inactive or mutant.
Replacing or simulating the function of these
genes, for example p21, which mediates p53-
dependent growth arrest, would provide the
potential of restoring lost functions. Finding

molecules which can replace or mimic p21
function could potentially provide the basis
for the design of novel anticancer drugs.100

Altering the balance between Bax/Bcl-2, or
selective and specific toxicity against cells
which over express Bcl-2, is another therapeu-
tic option and drugs such as antimycin A are
being actively pursued to this end.101

Immunotherapy

The altered proteins coded by mutant p53 can
potentially be used as targets for the immune
system, which if recognized accurately could
provide a nontoxic tumor specific treatment.
Most of the in vivo work in this area has been
carried out on mice and the potential of using
this treatment in human cancers, in a way
analogous to growth factor receptor therapies
such as Lapatanib and Herceptin, has yet to
be explored.102 One promising phase II trial
of vaccination with p53 peptide pulsed den-
dritic cells did result in associated with disease
stabilization in 40% of patients with p53
expression in advanced breast cancer.103

CONCLUSIONS

The p53 gene is a complex protein at the cen-
ter of a network of cellular pathways with mul-
tiple interactions involved in the response to
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DO-1 FP3

Figure 12.5 Immunohistochemical staining of a cancer for p53 using the antibodies DO-1 (binds to the N-terminal
end of p53) and FP3 (binds to the phosphorylated serine 392 residue at the C-terminus). Nuclear p53 staining of most
cells for p53 (DO-1) and many cells for activated, phosphorylated p53 (FP3) is demonstrated.
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cell-damaging agents including radiotherapy and
chemotherapy. Through pleiotropic actions –
including regulation of cell growth and divi-
sion, gene transcription, DNA repair, and
genomic stability – p53 behaves as a guardian
of the genome. Aberrations of p53, including
alterations in the upstream and downstream
pathways (e.g. MDM-2, p21, and Bax), muta-
tion, and modifications of protein expression
and activation make p53 a key target for anti-
cancer therapy. The precise clinical importance
of p53 in human breast cancer as a diagnostic
marker, predictor of disease response or poor
prognostic factor remains controversial. How -
ever, therapeutic strategies to bolster the func-
tion of normal p53 or substitute for its function
where p53 is mutant, are yielding in vitro and
in vivo clinical advances. While much remains
to be understood and developed into clinically
useful strategies in the field of p53 in breast can-
cer, substantial progress in our understanding
has been achieved and therapeutic benefits are
awaited.
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INTRODUCTION

The human epidermal growth factor receptor 2
(HER2) gene, localized to chromosome 17q21,
encodes a 185 kDa transmembrane tyrosine
kinase receptor and is overexpressed in about
20–25% of invasive carcinomas of the breast1–3

as a result of gene amplification.4 HER2 is
important for cell differentiation and adhesion,
induces cell division and stimulates factors facil-
itating cell motility and tumor metastasis.5 The
clinical consequences of HER2 overexpression
or gene amplification, henceforth referred to as
“HER2 positivity”, are widely documented.6–9

HER2 positivity is associated with worse prog-
nosis (higher rate of recurrence and mortality)
in patients with newly diagnosed breast cancer
who do not receive any adjuvant systemic ther-
apy. Therefore, some countries incorporate
HER2 status into clinical decision-making along
with other prognostic factors when considering
whether to give adjuvant systemic therapy.
There is also preliminary evidence of the pre-
dictive value of HER2 status in relation to
systemic chemotherapies.6,9,10 Most critically,
several studies have now shown that agents
which target HER2, especially Herceptin and
Lapatinib, are remarkably effective in the
metastatic and adjuvant settings.11–14

HER2 remains an important target in the
development of a variety of new cancer therapies,
which include monoclonal antibody (mAb)-
based therapy, small-molecule drugs directed at
the internal tyrosine kinase portion of the HER2
oncoprotein, and vaccines. The most widely

known HER2-directed therapy is trastuzumab
(Herceptin; Genentech, South San Francisco,
CA, USA). Trastuzumab is a humanized recom-
binant mAb that specifically targets the HER2
extracellular domain. Recently, the US Food
and Drug Administration (FDA) also approved
Lapatinib (Tykerb; GSK, Philadelphia, PA, USA)
for clinical use.15

There are a variety of techniques available to
determine HER2 status in breast cancer, some
of which are employed for research purposes
only.9,10,16 In diagnostic pathology laboratories,
HER2 status is routinely assessed either by
immunohistochemistry (IHC), which assesses
expression of the HER2 oncoprotein, and in
situ hybridization (FISH), which measures the
number of HER2 gene copies or gene amplifi-
cation.17,18 Modifications of ISH using colorimet-
ric detection are increasingly being developed
including chromogenic in situ hybridization
(CISH) or silver enhanced in situ hybridiza-
tion (SISH).19–24

This chapter reviews the various methods
used to detect HER2 expression as well as
HER2 gene status as a prognostic and predic-
tive factor, paying particular attention to crite-
ria for robust and accurate HER2 diagnostics.
Future prospects for novel HER2 biodirected
therapies are also briefly considered. 

METHODS FOR HER2 TESTING

Diagnostic tests must be robust, reproducible,
accurate and reliable, as well as being applica-
ble to routinely fixed tissue samples. For this
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reason, many techniques which are either not
applicable to fixed tissues (e.g. Southern,
Northern and Western blotting3,17,25–28) or
which disrupt tissue architecture (e.g. poly-
merase chain reaction (PCR) based methods29)
are not at present regarded as appropriate for
clinical diagnosis of HER2 status.9

Current guidelines for HER2 testing1,30

specify the use of in situ methods of detecting
either the HER2 protein (by IHC) or gene
amplification (using FISH or other in situ
methods). Guidelines stress the need for strin-
gent, reproducible and consistent criteria for
testing [reviewed in refs.1,9,30 However, Wolff
et al1 also recommend that attention is given
to accuracy: “A precise definition of accuracy
is how close the measured values are to a sup-
posed true value.” We have therefore reviewed
data on test accuracy below and included this
in the discussion of the relative merits of cur-
rent diagnostic methods.

Immunohistochemistry for HER2 testing

Among the methods in use for determining
HER2 status, IHC has become predominant.
However, several factors can adversely affect
IHC process, especially when performed on
formalin-fixed paraffin-embedded tissues.
Previous studies have demonstrated a signifi-
cant loss of tumor marker-immunostaining
intensity on stored paraffin slides of breast
cancer31 and that different fixatives impact on
HER2 immunostaining.32 In studies employing
various commercially available antibodies, a
wide variety of sensitivity and specificity in
fixed paraffin-embedded tissues is seen.33,34

Antigen retrieval techniques are also nonstand-
ardized and so introduce the potential for
false-positive staining. Nonetheless, IHC does
possess many advantages to support wide-
spread adoption: (1) it allows for the preserva-
tion of tissue architecture and so can be used
to identify local areas of overexpression within
a heterogeneous sample, and can distinguish
between in situ and invasive cancer; and (2) it
is applicable to routine patient samples facilitat-
ing use as a diagnostic test, and in performing
prospective and retrospective research studies

of HER2 status including the high-throughput
tissue microarray (TMA) technology.

However, many studies have highlighted
the potential for error and inconsistency in
HER2 IHC when nonstandardized methods
and multiple antibodies are used. Following
the introduction of trastuzumab, the Task
Force for Basic Research of the EORTC–
GCGC35 began the drive towards a consensus
on immunohistochemical staining interpreta-
tion. Two FDA-approved IHC tests for deter-
mining HER2 status are available: HercepTest
(DAKO, Carpeteria, CA, USA), based upon a
polyclonal antibody; and CB11 (Pathway,
Ventana Medical Systems, Tucson, AZ, USA),
based upon a monoclonal antibody. The
National Comprehensive Cancer Network
guidelines18 classified an IHC score of 0 or 1+
as representing HER2-negative status, 3+ as
positive, while 2+ is equivocal. Positive stain-
ing was defined as strong, continuous mem-
branous expression of HER2 in at least 10% of
tumor cells. However, a joint report from the
American Society of Clinical Oncology
(ASCO) and the College of American
Pathologists (CAP),1 specified a threshold of
>30% strong circumferential membrane stain-
ing for a positive result. If both uniformity and
a homogeneous, dark circumferential pattern
are seen (Figure 13.1), the resultant cases are
likely to be amplified by FISH as well as posi-
tive for HER2 protein expression. The equiv-
ocal range for IHC (score 2+), which may
include up to 15% of samples,36 is defined as
complete membrane staining that is either
nonuniform or weak in intensity, but with
obvious circumferential distribution in at least
10% of cells. Equivocal or inconclusive results
should be tested by FISH. Consistent with pre-
vious guidelines, a negative HER2 test is
defined as either an IHC result of 0 or 1+ for
cellular membrane protein expression (no
staining or weak, incomplete membrane stain-
ing in any proportion of tumor cells). 

In situ hybridization for HER2 testing

FISH and CISH directly measure the number of
HER2 genes, and when there is a chromosome
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centromeric enumeration probe (CEP)
included also the copy number of chromo-
some 17.17,33,37 Gene amplification is defined
as an increase in HER2:CEP17 ratio >2.0.
Some laboratories have used copy number
cut-offs as a surrogate for amplification but
this may lead to diagnostic inaccuracy. ISH
results are semiquantitative, counting the
number of signals in nonoverlapping inter-
phase nuclei of the lesion using either single-
colour (HER2 probe only, e.g. Ventana Inform)
or dual-colour hybridization (using HER2 and
chromosome 17 centromere probes simulta-
neously (e.g. Abbott, Chicago, USA, DAKO,
Copenhagen, Denmark etc), the latter mak-
ing it easier to distinguish true HER2 amplifi-
cation from chromosomal aneuploidy. ISH
allows simultaneous morphologic assessment,
where evaluation of gene amplification can be
restricted to invasive carcinoma cells. Many
studies have compared FISH and IHC in the
evaluation of HER236,38–40 demonstrating vari-
able concordance between the two techniques
of up to 91%. Two studies have shown that
FISH more accurately predicts HER2 positiv-
ity41,42 than IHC when applied to molecularly
characterized breast cancers. Further studies
suggest that FISH results in fewer equivocal
results42 and is markedly more reproducible
than IHC.41,43,44 These results suggest that
FISH may be a more appropriate first-line test
than IHC in line with standards defined by the
ASCO/CAP guidelines.1

Three FISH tests are FDA-approved for select-
ing patients for treatment with trastuzumab.
The Path Vysion (Vysis Inc, Downers Grove,
IL, USA) and PharmDx (Dako) tests require a
ratio of HER2:CEP17 ≥2.0 for the sample to
be considered amplified, and both include an
HER2 gene probe and a chromosome 17
probe (Figure 13.2). The INFORM test
(Ventana Medical Systems) requires that at
least 5.0 gene copies of HER2 be present if a
sample is to be considered amplified as this kit
uses a single HER2 gene probe without a
chromosome 17 probe. 

A small number of cases are diagnosed with
an average HER2 gene: CEP17 ratio of between
1.8 and 2.245 due to the variation in scores
between observers;9 some recommendations
have suggested these cases be regarded as “bor-
der line”. However, for the vast majority of these
cases scoring additional cells will result in a
clear diagnosis.

Accuracy and reproducibility of
diagnostic assays

Despite considerable efforts devoted to stand -
ardizing methods to determine HER2 status by
IHC or FISH, there are still several conditions
which can result in false-positive or false-negative
results for these techniques: antigen loss may
occur in up to 20% of HER2-positive samples.

Figure 13.1 Overexpression of the HER2 protein by
immunohistochemistry. Figure 13.2 Amplification of the HER2 gene detected

by fluorescence in situ hybridization (FISH) using a Vysis
Kit with an inbuilt control (chromosome 17 probe).

Walker-8050-13:Walker-8050-13.qxp 5/30/2008 4:52 PM Page 170



ASSESSMENT OF HER2 IN BREAST CANCER   171

Several other conditions can contribute to false-
positive or false-negative IHC results, including
tissue processing, reagent variability, antigen
retrieval methods, scoring interpretation, tumor
heterogeneity, and the semiquantitative nature
of the test.18,21,44,46

In addition, discrepancies in HER2 status
can be laboratory dependent. For example,
Perez et al44 reported that when HER2 status
determined by IHC and FISH were compared
between local pathology laboratories and cen-
tral laboratories, a high degree of discordance
was found to exist in HER2 between them.
They also confirmed that FISH results were
significantly more consistent between local
and central laboratories (see ref70). Also, in
cases of discordance between local and cen-
tral laboratories, there was a high degree of
agreement between the central laboratory
and reference laboratories. Reddy et al46 con-
cluded that use of high-volume HER2 testing
reference laboratories will improve the process
of selecting patients who are likely to benefit
from trastuzumab by accurate determination
of HER2 status.

RECOMMENDED GUIDELINES FOR
HER2 ASSESSMENT 

Recently, guidelines for HER2 assessment have
been published,1,18,30 which recommended the
following.

1. There should be standardized fixation:
Breast specimens, after appropriate gross
inspection and designation of margins,
should be promptly sliced at 5–10 mm
intervals and fixed in 10% neutral buffered
formalin. Fixation should be for at least 6
hours (needle core biopsies) to no more
than 48 hours. Fixation masks protein
antigen expression and changes the require -
ments for enzymatic digestion. Prolonged
fixation may result in false-negative IHC
results. 

2. Prolonged storage of glass slides with cut
sections of tissue should be avoided. 

3. For both IHC- and FISH-based HER2
testing, comprehensive standardization of

methodology and the inclusion of
validated controls are mandatory. 

4. Excessive antigen retrieval can be monitored
by an evaluation of normal breast epithelial
cells as an internal control. The inclusion
of a recommended positive control, or controls,
producing results close to important decision-
making points and a negative control are
recommended. 

A two-phase testing algorithm based on IHC
assay as the primary screen with reflex to FISH
reserved for equivocal cases is currently rec-
ommended. This is based on evidence show-
ing very good concordance between IHC and
FISH results on breast carcinomas from 37
laboratories when tested in experienced ref-
erence centers.40

For the assessment of both IHC and FISH
preparations, training and experience in the
interpretation of histological characteristics of
breast tissue are essential. The recognition of
different histological tumor types is required.
HER2 status should be determined only on
the invasive portion of the tumor.

Participation in external quality assessment
schemes are essential, as there is evidence to
show increased reproducibility of results by
laboratories over time when participating in
external quality assessment for HER2. The
United Kingdom National External Quality
Assessment Scheme (UK-NEQAS) schemes
are open to laboratories across Europe. 

Guidelines for HER2 testing

Although published data support the use of
FISH for the selection of patients most likely to
respond to trastuzumab,20,45,47 the current UK
licence for this agent allows the treatment of
patients with tumors strongly staining by IHC.
Worldwide, there remains an ongoing debate as
to whether laboratories should switch to the use
of FISH for all specimens, removing the need
for a second tier of testing to identify HER2-
positive cases, or adopt the two-tier testing strat-
egy currently in use in the UK. Increasingly,
FISH testing is seen as the optimal method for
determining HER2 status in breast cancer. 
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IHC recommendations

1. Antigen retrieval must be standardized
and follow strict protocols. The antibody
used and its titre should be predefined.
Standardization can be assisted using
commercial assays. For inhouse assays no
single antibody has consistently been
shown to offer superior specificity and
sensitivity. However, choice of antibody
can affect decision-making. Fornier et al48

reported that 95% of patients evaluated
using mAb CB11 were found to be 2+/3+,
but only 84% of patients evaluated using
the polyclonal Herceptest antibody were
2+/3+. Such variation in results has
important implications for patients. Test
conditions (temperature, exposure time,
etc.) should be standardized.

2. It is recommended that the sensitivity of the
IHC method should be set below that which
detects normal amounts of HER2 protein in
benign or normal breast epithelial cells.
Observers should be aware of the range of
common artefacts, including edge artefacts,
which can be problematic in small biopsy
samples, and the effects of variation in
method sensitivity, such as excessive antigen
retrieval, leading to background staining
and normal cell membrane reactivity. 

3. Membrane staining must only be scored
positive if circumferential regardless of the
percentage of positive cells. 

4. Only invasive tumor should be considered
when scoring HER2 tests. 

5. The scoring method recommended is a
semiquantitative system based on the
intensity of the reaction product and the
percentage of membrane-positive cells,
giving a score range of 0–3+. 

FISH recommendations

1. To appropriately diagnose HER2 gene
amplification inclusion of a chromosome
17 control probe is essential, either in a
single assay or in a two-step progress. Over
50% of breast cancers have chromosome
17 aneusomy and this can markedly affect
the HER2 result.49

2. Adequate quality assurance, both internal
and external, by participation in national
external quality assurance schemes; this is
regarded as mandatory by both local UK
and international guidelines. 

3. For FISH, there is no evidence that
prolonged storage of blocks leads to deter -
ioration of signal; however, cut sections
should be processed within 12 months.
Methods should be standardized to maintain
nuclear morphology and should follow
strict protocols. Areas of invasive tumor
should be located for scoring as ductal
carcinoma in situ (DCIS) will often be
amplified even when adjacent invasive
tumor cells are negative. 

4. Scoring by FISH should including analysis
of 20–60 cells from at least three invasive
tumor areas; areas of in situ carcinoma
should not be counted. HER2 FISH results
are conventionally expressed as the ratio of
HER2 signal to chromosome 17 signal or
the HER2 gene copy number. In most
cases, where either clear amplification is
observed or the ratio is <1.5, scoring of 20
cells is sufficient. In cases where either
tumor heterogeneity is seen (1–2% of
cases) or the ratio is close to 2.0 more cells
should be scored (up to 60). If genomic
heterogeneity of HER2 gene amplification
is found, it must be specifically reported;50

however, no current consensus recommenda -
tions exist for handling of genomic
heterogeneity. 

QUALITY ASSURANCE

All clinical laboratories using assays for HER2
as predictive or prognostic tests must partici-
pate in an appropriate external quality assur-
ance (EQA) program, such as that run by the UK
NEQAS for IHC (UK NEQAS-ICC). In the USA,
the CAP Laboratory Accreditation Program
now requires that every CAP-accredited labo-
ratory performing HER2 testing participates
in a guideline-concordant proficiency testing
program for that testing. In the future, it is
expected that all accrediting agencies will require
guideline-concordant proficiency testing and
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laboratory accreditation requirements for
HER2 testing.

OTHER APPROACHES IN
HER2 TESTING

Tissue microarray technology enables a large
number of cancers to be analyzed under identi-
cal conditions in a highly economical and effi-
cient manner. Using this technology in assessing
HER2 status in primary breast cancers51,52 there
was a highly significant correlation of HER2
scores between whole sections and correspond-
ing tissue microarrays (94% (p < 0.0001)).51,53

The use of automated image analysis sys-
tems, which removes bias in colour grading,
has been suggested as a means to improve the
reporting of IHC-stained HER254–56 and FISH
tests.57,58 Other studies have applied high-
throughput semiautomated assessment of HER2
status by assessing the feasibility of profiling
HER2 by combining tissue microarray tech-
nology and the image analysis.39

Chromogenic in situ hybridization 

CISH and SISH are colorimetric methods to
detect gene amplification which can be
viewed using a standard light microscope.
Most studies report concordance between
FISH and CISH of 83–100%.21,22 In a recent
study of comparison between FISH and SISH
for the validation of HER2 gene status,23 the
overall concordance between the two tech-
niques was 96.0% (kappa = 0.754, 95% confi-
dence interval (CI). Most of the discrepancies
were seen in tumors with intratumoral het-
erogeneity of HER2 amplification. There was
a low interobserver variability in the interpre-
tation of SISH, suggesting that SISH is equally
reliable in determining HER2 amplification as
FISH. Our results were also consistent with
the only previous study that compared the two
techniques,24 and showed a high rate of con-
cordance between SISH and FISH. Therefore,
we can conclude that HER2 gene copy status
can be reliably determined by SISH. Although
SISH combines bright-field microscopy with
molecular analysis and full automation, has

showed a high rate of concordance with FISH,
and appears to be particularly suited for rou-
tine application in surgical pathology, it is still
of research interest and has yet to be
approved for diagnostic use.

PRIMARY AND METASTATIC
BREAST CANCER

Currently, treatment of metastatic breast can-
cer patients with HER2-positive tumors is
based on HER2 status derived from the pri-
mary tumor, which was generally removed
many years previously and stored as paraffin-
embedded blocks. In a report by Zidan et al,59

it was pointed out that HER2 status of the pri-
mary tumor may not accurately reflect the
HER2 status of the metastatic tumour, and that
this should be taken into account when mak-
ing treatment decisions. Those investigators
demonstrated 14% discordance between pri-
mary and metastatic tumors by IHC. Edgerton
et al,60 employing IHC and FISH, reported
20% discordance between the primary and
metastatic tumor, which was due to normal
HER2 expression in the primary tumor and
HER2 overexpression in the metastatic tumor.
Gancberg et al61 compared HER2 status of the
primary breast tumor with that of at least one
distant metastatic tumor in 107 patients using
both IHC and FISH. There was a 6% (6/100)
rate of discordance with IHC between the pri-
mary and metastatic tumor. In the six cases of
discordance, there was greater HER2 staining
in the metastatic tumor tissue than in the pri-
mary tumor tissue. By FISH analysis, 7%
(5/68) of the cases were discordant. Although
evidence is limited at present, and more
research is needed, we have suggested that,
where available, metastatic deposits of breast
cancer should be tested for HER2 status in
addition to the primary site. 

ASSESSMENT OF HER2 IN BREAST
CORE NEEDLE BIOPSIES

Several reports have shown that the assess-
ment of HER2 status on needle core biopsies
(NCBs) in breast cancer is accurate and
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reliable.62–65 A study of 325 primary breast
cancer patients investigated the accuracy of
HER2 status using IHC and FISH on NCBs,
and compared the result with surgical speci-
mens.66 They found that the accuracy of IHC
assessment of HER2 in NCBs was 92% and
increased to 96% with additional FISH analy-
sis, which was applied to all strongly positive
cases. Therefore, they recommended per-
forming FISH analysis for cases with strong
IHC positivity on NCBs in order to minimize
the number of false-positive results. Although
NCBs have the advantage of good fixation,
there can be crushing that makes it difficult to
interpret the pattern of staining, and there
may be staining at the edge of the cores (edge
artefact). In addition, more care should be
taken to differentiate between DCIS staining
and invasive tumor staining for HER2 in
NCBs, and a comparison with hemotoxylin
and eosin (H&E) may be helpful in this
regard. There is no data available to indicate
whether repeating staining on resected speci-
mens in cases where HER2 is 1+ or 2+ on
NCBs is of value, but this may be appropriate
until evidence-based data are available. 

CLINICAL VALUE OF HER2 TESTING

Prognostic significance and association
with other prognostic factors

The seminal work by Slamon et al3 in 1987
showed that HER2 gene amplification indepen-
dently predicted overall survival (OS) and
disease-free survival (DFS) in a multivariate analy-
sis in node-positive patients.3 Since then most
large studies have confirmed this relationship in
multivariate analysis.7,52 Thus, it is now well estab-
lished that there is a significant correlation
between HER2 overexpression/amplification
and poor prognosis for patients with nodal meta -
stasis. There is, at present, no consensus on the
prognostic value of HER2 in node-negative breast
cancer patients; a group most often diagnosed
through screening programs and representing a
subgroup which could potentially benefit highly
from appropriate adjuvant therapy. Rilke et al67

reported on the prognostic significance of HER2

expression and its relationship with other prog-
nostic factors. Using specimens from 1210 con-
secutive patients treated between 1968 and 1971
at a single institution (National Cancer Institute
of Milan), with no systemic adjuvant therapy and
20-year follow-up, they found overexpression of
HER2 in 23% of cases and showed a negative
impact on survival of node-positive but not node-
negative patients. Some studies have also reported
lack of prognostic significance in node-negative
group;68–70 however, others have found a prog-
nostic value for HER2 in node-negative patients
in selected subgroups.71–73 This plethora of con-
flicting results may be explained by low numbers
of patients evaluated in some studies and the
diversity of methods used. 

There is, at present, no agreement on the
association between HER2 and other prog-
nostic factors. Several studies suggest a lack of
association between HER2 status and increas-
ing tumor size,3,74 yet some do find a correla-
tion.70,75 Most studies have failed to find an
association between patient age at diagnosis
and HER2 status.3,70,76 Similar inconsistencies
have been reported for aneuploidy, grade,
and proliferation index.67,76,77

Prediction of response to therapy

Selection of adjuvant treatment for patients with
breast cancer based on HER2 status was initially
addressed by Clark et al.78 Since then there have
been numerous studies but results have not
been consistent, and interpretation of these data
is complicated and open to discussion.79

Endocrine therapy

Transfection of normal breast cancer cells
with the HER2 gene has been shown to result
in acquisition of estrogen-independent
growth which is insensitive to tamoxifen.80,81 A
number of clinical studies, using various end-
points, have reported an association between
HER2 positivity and resistance to endocrine
therapy.82–84 Some reports have described spe-
cific resistance to tamoxifen in HER2-overex-
pressing tumors.82,84 The recently reported
20-year update of the Naples GUN Trial82
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found that HER2 overexpression not only pre-
dicted resistance to tamoxifen, but that HER2-
positive patients had a worse outcome on
tamoxifen therapy compared to those who
were untreated. 

Several studies have also shown a reduction
in response rates to endocrine therapy. Metastatic
breast cancer which overexpressed HER2, mea-
sured by high plasma levels of the extracellular
domain, demonstrated a substantial reduction
in response rate to endocrine therapy.85 Cheung
et al86 have examined marker levels [CA
15.3, CEA, ESR and serum HER2] in 15
patients receiving docetaxel-based regimes
from two multicenter trials. Measurement of
serum HER2 showed a correlation with tissue
HER2 (Herceptest) in the primary tumor
(p <0.003); and, more importantly, among
those patients with positive tissue staining,
sequential changes in serum HER2 paralleled
initial response.

Other studies have failed to find an associa-
tion or even a trend between HER2 status and
response to endocrine therapy.87–89 Elledge et al89

examined the response to tamoxifen in 205
tumors with estrogen receptor (ER)-positive
disease. In HER2-positive compared to HER2-
negative patients, they found no significant evi-
dence for a poorer response, time to treatment
failure, or survival. In another study, the rela-
tionship between HER2 overexpression and
response to tamoxifen was examined in the
adjuvant setting in 741 (650 ER-positive, 91 ER-
negative/progesterone receptor (PR) positive)
of the total 1572 patients in the CALGB 8541
Trial who had HER2 measured.87 Tamoxifen
significantly improved response, DFS and OS
irrespective of HER2 status. However, it is
important to appreciate that tamoxifen was not
randomized within this trial and that all patients
had received one of three regimens of doxoru-
bicin, and response to this was related to HER2
status. Thus, this data on tamoxifen resistance
has some limitations in interpretation. 

Chemotherapy

Initial studies examining the role of HER2 in
predicting response to chemotherapy looked

at regimens containing cyclophosphamide,
methotrexate and 5-fluorouracil (5-FU) (CMF).
Results from these analyses demonstrated a
reduced benefit from CMF therapy in HER2-
positive as against HER2-negative patients;83,90,91

however, other authors do not support this.92

Thus, whilst HER2 status may be predictive of
response to CMF therapy, it must again be
remembered most of these studies were based
on use of archival material obtained for retro-
spective analysis using multiple techniques
and scoring methods. 

A potential relationship between HER2 sta-
tus and response to anthracycline-based
chemotherapy, usually doxorubicin combined
with cyclophosphamide and 5-FU (CAF), has
been addressed in several studies.93 In the first
described analysis of an interaction between
expression of HER2 and adjuvant therapy with
doxorubicin-containing regimens using results
from the Cancer and Leukaemia Group B
(CALGB) study, Muss et al87 found that tumors
which overexpressed HER2 responded well to
dose-intensive CAF. Additional studies have
confirmed these results.94,95 The NSABP study
B-11 was originally designed to compare regi-
mens of L-phenylalanine mustard plus 5-FU
with or without doxorubicin.94 In this trial the
addition of doxorubicin improved outcomes
in HER2-positive patients to the extent that
they were equivalent to those with HER2-negative
tumors. These data suggest a significant inter-
action between HER2 overexpression and
chemosensitivity to anthracyclines. There are,
however, several studies which have demon-
strated no predictive value in response to
antracycline-based therapy.96,97 However, it is
important to note that most of these studies
had fewer patients than those showing a posi-
tive predictive value. Also, in the study by
Clahsen et al,96 the patients received only one
cycle of perioperative chemotherapy rather
than the standard four or more cycles. Thus,
HER2 overexpression may indicate a relative
sensitivity to optimal versus suboptimal anthra-
cycline dosage. The predictive potential
between HER2 overexpression and response
to other forms of treatment has been investi-
gated in several studies, but the results are not
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definitive and further studies are required
before conclusions can be drawn. 

Anticancer approaches using 
monoclonal antibodies 

The HER2 receptor has an extracellular part
and binds to a putative growth factor for acti-
vation, which suggests that one or both may be
possible therapeutic targets. Research studies
have demonstrated that the extracellular domain
of the HER2 receptor tyrosine kinase is readily
accessible to systemically administered anti-
body-based therapeutics, including growth-
inhibiting monoclonals such as rhuMAbHER2
(trastuzmab/Herceptin®) as well as anti-HER2
immunotoxins, antibody-dependent enzyme
prodrug therapy (ADEPT), and immune cell
recruiting bispecific antibodies. 

Several studies have described the develop-
ment of murine monoclonal antibodies
directed against various epitopes of the extra-
cellular domain of HER2. These antibodies
were found to inhibit the proliferation of
tumors and transformed cells which overex-
pressed HER2.98–100 A murine anti-HER2 anti-
body (4D5) has been investigated and found
to inhibit the growth of human breast cancer
cell lines both in vitro and in xenograft mod-
els which overexpress the HER2 extracellular
domain.101,102 Additionally, the antibody was
shown to enhance the antitumor effect of
paclitaxel and doxorubicin against HER2-
positive human breast cancer xenografts,103

and the effects of cisplatin against breast and
ovarian cancer cell lines.104 The ability of anti-
HER2 antibodies to interfere with repair of
cisplatin-induced DNA damage has been pos-
tulated as a possible mechanism.105

A major limiting factor with the use of
murine monoclonal antibodies in humans is
the development of neutralizing human anti-
mouse antibodies (HAMA), which is why most
have remained in experimental use. However,
this recurring problem can be circumvented
by humanizing chimeric antibodies. The
humanization of the murine 4D5 monoclonal
antibody has lead to developing the resulting
recombinant human anti-HER2 monoclonal

antibody (trastuzumab). Trastuzumab was the
first of the monoclonal antibodies to be used
in the treatment of those patients who have
HER2-positive metastatic breast cancer. It is
most effective when combined with cytotoxics,
such as the taxanes and vinorelbine.106–108 It is
well tolerated but associated cardiotoxicity
makes use with anthracyclines, and in patients
with cardiac dysfunction, problematic. A fur-
ther adverse observation is that the rate of
development of cerebral metastases is more
than double in patients who have received
trastuzumab as part of the treatment regi-
mens.109,110 Trastuzumab has been combined
with cytotoxics, hormones, other monoclonal
antibodies (such a pertuzumab and beva-
cizumab), and targeted small molecules such
as lapatinib, and it can be conjugated with
cytotoxics to deliver them to cancer cells.111–113

The dosage, duration of therapy and optimal
combinations in advanced and early stage
breast cancer, and use after relapse, are still
being defined. Although no overall survival
advantage has been reported in these trials,
nonetheless, adjuvant trastuzumab has
demonstrated a benefit in prolonged DFS and
reduction of risk of recurrence by up to 50%
in early stage breast cancer. 

Other HER2-directed therapy

Immunotherapy and immunization

Vaccine strategies are being investigated as
another method of targeting HER2 overex-
pressing cancer cells. Patients with HER2-
positive tumors have been shown to develop
an immune response against the protein,114–116

which suggests that antireceptor vaccines may
be successful in mounting an anticancer
response. With a large difference in levels of
expression between HER2-positive tumors
and normal tissues, there exists a potential
therapeutic window for such cancers with no
residual autoimmune toxicity. Some of the
first described investigations of targeting and
treating by immunization were murine
tumors overexpressing the rat oncogenic neu.
These cancers were immunized with a vaccinia
virus recombinant of the protein’s extracellular
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domain.117 Both intracellular and extracellu-
lar portions of the HER2 receptor have been
shown to elicit specific responses from cyto-
toxic T-lymphocytes (CTL). Immunizing rats
with peptides derived from the self-rat Neu,
but not with the whole protein, is known to
promote antibody and T-cell responses against
the native protein.118 Nagata et al119 have sub-
sequently shown that similar peptides, derived
from the murine ErbB-2 receptor, can induce
CTL activity, which results in the suppression
of growth of HER2 overexpressed cells in syn-
geneic hosts.

Gene therapy

HER2 overexpression is significantly influ-
enced by transcriptional upregulation in
human cancers.120 This suggests that manipu-
lation of the promoter activity could be used as
a therapeutic approach. Selective expression
of suicide genes driven by regulatory regions
of the HER2 promoter renders cells sensitive
to gancyclovir.121 Adenovirus type 5 early
region 1A gene product (E1A) has been used
to repress HER2 expression, thereby suppress-
ing the tumorigenic potential of overex-
pressed cells.122 More importantly, the growth
of human breast cancer cells in nude mice is
efficiently inhibited by the viral product using
vector or liposomal delivery.123 Anti-HER2 tar-
geted hammerhead ribosomes, under control
of a tetracycline-regulated promoter, have
been shown to abrogate expression of the
HER2 protein, resulting in inhibition of tumor
growth in nude mice and tumor regression
upon tetracycline withdrawal.124 Adenoviral
vectors have been used for the introduction of
an anti-HER2 single-chain antibody (via DNA
delivery) which retains the protein within the
cell. When the vector was injected intraperito-
nially, it resulted in reduction of tumor burden
in severe combined immunodeficiency mice.125

Immunotoxins

Advances in recombinant antibody technology
have made it possible to circumvent problems
inherent in chemical coupling of antibodies

and toxins, and have allowed construction via
gene fusion of recombinant molecules which
combine antibody-mediated recognition of
tumor cells with specific delivery of potent pro-
tein toxins of bacterial or plant origin.
Therefore, antibodies to HER2 may also be
able to play a role as vehicles for the targeting
of therapeutic agents to cancers. Immuno -
toxins have been constructed with various anti-
HER2 antibodies which have been coupled to
Lys-PE40, a recombinant form of Pseudo -
monas exotoxin.126 The ligands in the erbB
family have also been studied as potential car-
riers, utilizing their binding affinity to respec-
tive receptors. Complete regression of human
breast cancer xenografts in nude mice was seen
when a fusion toxin of NRG 1 was adminis-
tered.127 A bispecific toxin of an anti-HER2
antibody and transforming growth factor-α also
inhibited the growth of breast cancer cells in
vivo.128 Antibody targeting of drug-loaded lipo-
somes has also been investigated as a vehicle
for drug delivery. Park et al129 showed that
immunoliposomes can efficiently bind to can-
cer cells, and deliver cytotoxic doses of doxoru-
bicin in a targeted manner. The develop ment
of a new class of tumor-specific killer lympho-
cytes which supplies a HER2-specific toxin has
been described. These cells produce and
secrete an antibody-targeted toxin in the
region of the tumor which results in high cyto-
toxicity towards tumors in an athymic murine
model,130 but human trials are required to assess
the clinical significance of such type of therapy.

CONCLUSION

HER2 is an oncoprotein which is overex-
pressed in about 20% of breast cancers,
almost universally as a consequence of gene
amplification. HER2 can be used as a prog-
nostic factor, may be predictive of response to
systemic chemotherapy, but is clearly predic-
tive for response to Herceptin. It is therefore
imperative that reliable and simple assays are
implemented into routine practice in most
hospital settings. Standardization of such
assays, as well as uniform scoring systems,
must be adhered to for accurate diagnosis of
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HER2 status. All invasive breast carcinoma
cases should be tested for HER2. A two-phase
testing algorithm based on IHC assay as the
primary screen, with reference to FISH
reserved for equivocal cases, is currently rec-
ommended. Positive IHC HER2 staining is
defined as uniform intense membrane stain-
ing of >30% of invasive tumor cells, while an
equivocal result (2+) is complete membrane
staining which is either nonuniform or weak
in intensity but with obvious circumferential
distribution in at least 10% of cells. In any
equivocal cases, FISH test should be per-
formed. Positive FISH result of amplified
HER2 gene copy number is defined as aver-
age of >6 gene copies/nucleus for test sys-
tems without internal control probe or
HER2:CEP17 ratio of >2.0, where CEP17 is a
centromeric probe for chromosome 17 on
which the HER2 gene resides. IHC and FISH
are the method of choice for HER2 testing
while, at present, other methods should be
used for research only. Stringent quality
assurance procedures should be taken to
ensure a valid test is performed in clinical
settings.
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